Use of ESR and HPLC to follow the anaerobic reaction catalysed by lipoxygenases.

Food Chem

AgroParisTech, Ingénierie Procédés Aliments, UMR1145, Massy, France; INRA, Ingénierie Procédés Aliments, UMR1145, Massy, France; CNAM Ingénierie Procédés Aliments, UMR1145, Massy, France. Electronic address:

Published: February 2015

The measurement of the 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL) consumption by using ESR allows to follow the anaerobic reaction between linoleic acid (LH) and its 13-hydroperoxide (LOOH) catalysed by lipoxygenase. During this reaction, two types of radicals are initially obtained, alkyl (L) and alkoxyl (LO) radicals which formed two types of adducts (LT and OLT) with TEMPOL as characterised by HPLC. The stoichiometry of the adduct formation is two mole of TEMPOL consumed for one mole of LH and one mole of LOOH. Using ESR, the kinetic parameters and the mechanism of the anaerobic reaction have been determined at pH 6.5 for three different lipoxygenases, soybean, horse bean and wheat and compared to the values obtained at pH 9 for soybean lipoxygenase. Wheat lipoxygenase is very weakly active compared to the other enzymes. An uncompetitive inhibition of the anaerobic reaction catalysed by soybean and horse bean lipoxygenases was observed with 2,6-di-tert-butyl-4-methylphenol (BHT).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2014.07.034DOI Listing

Publication Analysis

Top Keywords

anaerobic reaction
16
follow anaerobic
8
reaction catalysed
8
soybean horse
8
horse bean
8
reaction
5
esr hplc
4
hplc follow
4
anaerobic
4
catalysed lipoxygenases
4

Similar Publications

Objective: Wrestling is a complex sport that requires a combination of strength, endurance, and wrestling-specific technical training. Endurance activities, such as running, are commonly performed for rapid weight reduction before competition. However, these activities can severely disrupt recovery and lead to significant declines in performance.

View Article and Find Full Text PDF

Anaerobic digestion is a crucial process in wastewater treatment, renowned for its sustainable biogas production capabilities and the simultaneous reduction of environmental pollution. However, dysregulation of vital biological processes and pathways can lead to reduced efficiency and suboptimal biogas output, which can be seen through low counts per million of sequences related to three critical control points for methane synthesis. Namely, tetrahydromethanopterin S-methyltransferase (MTR), methyl-coenzyme reductase M (MCR), and CoB/CoM heterodisulfide oxidoreductase (HDR) are the last reactions that must occur.

View Article and Find Full Text PDF

Understanding the viability of ingested probiotics within the gastrointestinal tract is essential for evaluating their efficacy and deciphering their mechanisms of action. Detecting Bifidobacterium longum subspecies longum BB536 is particularly challenging owing to its indistinguishability from the naturally abundant B. longum species in the human gut.

View Article and Find Full Text PDF

Effect of Reaction Interface Structure on the Morphology and Performance of Thin-Film Composite Membrane.

Environ Sci Technol

January 2025

Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China.

Thin-film composite (TFC) membrane has been extensively utilized and investigated for its excellent properties. Herein, we have constructed an active layer (AL) containing cave-like structures utilizing large meniscus interface. Furthermore, the impact of interface structure on the growth process, morphology, and effective surface area of AL has been fully explored with the assistance of sodium dodecyl benzenesulfonate (SDBS).

View Article and Find Full Text PDF

Excess biological sludge processing and disposal have a significant impact on the energy balance and economics of wastewater treatment operations, and on receiving environments. Anaerobic digestion is probably the most widespread in-plant sludge processing method globally, since it stabilizes and converts biosolids organic matter into biogas, allowing partial recovery of their embedded chemical energy. A considerable number of studies concerning applicable techniques to improve biogas production, both in quantity and quality, include pre-treatment strategies to promote biosolids disintegration aimed at the release and solubilization of intracellular energy compounds, inorganic/biological amendments aimed at improving process performance, and sludge thermal pre-treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!