The presence of endotoxins in preparations of recombinantly produced therapeutic proteins poses serious problems for patients. Endotoxins can cause fever, respiratory distress syndromes, intravascular coagulation, or endotoxic shock. A number of methods have been devised to remove endotoxins from protein preparations using separation procedures based on molecular mass or charge properties. Most of the methods are limited in their endotoxin removal capacities and lack general applicability. We are describing a biotechnological approach for endotoxin removal. This strategy exploits the observation that endotoxins form micelles that expose negative charges on their surface, leading to preferential binding of endotoxins to cationic surfaces, allowing the separation from their resident protein. Endotoxins exhibit high affinity to stretches of histidines, which are widely used tools to facilitate the purification of recombinant proteins. They bind to nickel ions and are the basis for protein purification from cellular extracts by immobilized metal affinity chromatography. We show that the thrombin-mediated cleavage of two histidine tags from the purified recombinant protein and the adsorption of these histidine tags and their associated endotoxins to a nickel affinity column result in an appreciable depletion of the endotoxins in the purified protein fraction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ab.2014.08.020DOI Listing

Publication Analysis

Top Keywords

histidine tags
12
recombinant protein
8
protein preparations
8
preferential binding
8
endotoxins
8
endotoxin removal
8
protein
6
endotoxin depletion
4
depletion recombinant
4
preparations preferential
4

Similar Publications

After overexpression in a suitable host, recombinant protein purification often relies on affinity (e.g., poly-histidine) and solubility-enhancing (e.

View Article and Find Full Text PDF

A colorimetric biosensor composed of split aptamers and mannan oligosaccharide nanozyme to monitor synthetic His-tagged food biomolecules.

Food Chem

February 2025

State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, PR China.

Food synthetic biology is garnering increasing attention for its potential to generate bioactive components. His-tag is one of the most popular tags used in food synthetic biology. Herein, His-tag, His-tagged proteins, and His-tagged peptides were adopted as the model targets, and a commonly used biosensor was developed to monitor His-tagged food biomolecules, using split aptamers as specific recognition probes and nanozyme as the transduction element.

View Article and Find Full Text PDF

Histidine oligomers (His-tags) are commonly used as affinity tags in recombinant protein purification to enable in vitro experimental studies, including biochemical and biophysical assays and structure determination. His-tags enable protein purification by specifically and efficiently coordinating bivalent metal ions present in the purification resins, such as Cu, Zn, and Ni. Although His-tags, combined with Ni-based resins, are widely used due to their biophysical properties and commercial availability, the structure and nature of the metal cation coordination have remained unclear.

View Article and Find Full Text PDF

Deleterious Effects of Histidine Tagging to the SH3b Cell Wall-Binding Domain on Recombinant Endolysin Activity.

J Microbiol Biotechnol

November 2024

Laboratory of Poultry Medicine, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea.

Natural and artificial endolysins exhibit bactericidal effects by destroying peptidoglycans in the cell wall of gram-positive bacteria and are usually composed of an N-terminal catalytic domain (CTD) and a C-terminal cell wall-binding domain (CBD). The structures and receptors of CBDs are variable, but bacterial Src homology 3 (SH3b) CBDs are prevalent among the natural endolysins of . Moreover, although recombinant endolysins with a C-terminal 6x histidine tag (His-tag) are often produced and convenient to purify, the deleterious effects of His-tags on antibacterial activity have not been evaluated thoroughly.

View Article and Find Full Text PDF

Recombinant protein production is pivotal in molecular biology, enabling profound insights into cellular processes through biophysical, biochemical, and structural analyses of the purified samples. The demand for substantial biomolecule quantities often presents challenges, particularly for eukaryotic proteins. Escherichia coli expression systems have evolved to address these issues, offering advanced features such as solubility tags, posttranslational modification capabilities, and modular plasmid libraries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!