Cardiovascular disease is a leading cause of death globally. Many cardiovascular risk factors can be modified through lifestyle modification, including dietary patterns that emphasize daily consumption of a variety of fruits and vegetables. Recent observational and clinical studies suggest that flavonoids, especially those abundant in grapes and other berries, may be associated with health benefits, particularly cardiovascular benefits. Human clinical data support cardioprotective benefits of grapes through inhibition of platelet aggregation, decreased low-density lipoprotein (LDL) oxidation, reduction in oxidative stress and improvements in endothelial function. Emerging evidence suggests that grapes may also have a favorable effect on blood lipids, decrease inflammation and reduce blood pressure in certain populations. Studies to date have shown that berries can have a beneficial effect on reducing LDL oxidation. Limited data suggest that berries may have a favorable effect on endothelial health and blood pressure. This review summarizes the current literature on human clinical studies examining the cardioprotective benefits of grapes and berries. Collectively, these data support the recommendation to incorporate products made with grapes and other berries into a heart-healthy diet.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jsfa.6890 | DOI Listing |
Food Chem (Oxf)
June 2025
College of Biology and Environment, Zhejiang Wanli University, No. 8 Qianhu South Road, Ningbo 315000, China.
Grapes are prone to softening, which limits their shelf life and suitability for long-distance transport. This study explored the molecular mechanisms underlying the effects of the chemical preservatives gibberellin (GA) and the nitric oxide donor sodium nitroprusside (SNP) on grape firmness. Enhancing grape quality, prolonging shelf life, and extending market supply were key objectives.
View Article and Find Full Text PDFFood Chem
January 2025
Shandong Academy of Grape, Shandong, Academy of Agricultural Sciences, Jinan 250100, China. Electronic address:
Grapevine white rot is a fungal disease that frequently occurs during the growing season, resulting in reduced fruit quality and severe yield losses. This work aimed to compare the differences in flavor profiles between wines made from different percentages of Coniella vitis-infected grapes by using FTIR spectrometer, sensory analysis, HS-SPME-GC-MS and HPLC-DAD. C.
View Article and Find Full Text PDFFood Chem
December 2024
Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366, OENO, ISVV, Villenave d'Ornon, F-33140, France.
A varietal origin of eugenol was previously demonstrated in Baco blanc, a major grapevine variety used to produce Armagnac wine spirits. Eugenol was found in high amount, both as the free and as unidentified glycosylated forms. To reveal their identity, a specific method was developed and applied to berry skin extracts.
View Article and Find Full Text PDFFoods
December 2024
A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia.
A highly sensitive lateral flow immunoassay (LFIA) for imidacloprid, a widely used neonicotinoid insecticide, has been developed. The LFIA realizes the indirect coupling of anti-imidacloprid antibodies and gold nanoparticle (GNP) labels directly in the course of the assay. For this purpose, the common GNPs conjugate with anti-imidacloprid antibodies and are changed into a combination of non-modified, anti-imidacloprid antibodies, and the GNPs conjugate with anti-species antibodies.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China.
Chlormequat chloride (CCC) has been demonstrated to inhibit plant growth and strengthen seedlings. The present study demonstrated that the root growth of grapevine seedlings was significantly enhanced by the application of CCC treatment. Nevertheless, the precise mechanism by which CCC regulates plant root growth remains to be elucidated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!