Thermomonas hydrothermalis is a Gram-negative thermophilic bacterium that is able to live at 50 °C. This ability is attributed to chemical modifications, involving those to bacterial cell-wall components, such as proteins and (glyco)lipids. As the main component of the outer membrane of Gram-negative bacteria, lipopolysaccharides (LPSs) are exposed to the environment, thus they can undergo structural chemical changes to allow thermophilic bacteria to live at their optimal growth temperature. Furthermore, as one of the major target of the eukaryotic innate immune system, LPS elicits host immune response in a structure-dependent mode; thus the uncommon chemical features of thermophilic bacterial LPSs might exert a different biological action on the innate immune system-an antagonistic effect, as shown in studies of LPS structure-activity relationship in the ongoing research into antagonist LPS candidates. Here, we report the complete structural and biological activity analysis of the lipo-oligosaccharide isolated from Thermomonas hydrothermalis, achieved by a multidisciplinary approach (chemical analysis, NMR, MALDI MS and cellular immunology). We demonstrate a tricky and interesting structure combined with a very interesting effect on human innate immunity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbic.201402233DOI Listing

Publication Analysis

Top Keywords

thermomonas hydrothermalis
12
innate immune
8
thermophiles potential
4
potential source
4
source novel
4
novel endotoxin
4
endotoxin antagonists
4
antagonists full
4
full structure
4
structure bioactivity
4

Similar Publications

Genomic insights into Thermomonas hydrothermalis: potential applications in industrial biotechnology.

World J Microbiol Biotechnol

January 2025

Department of Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Medeniyet University, Istanbul, 34700, Turkey.

Thermomonas hydrothermalis, a thermophilic bacterium isolated from hot springs, exhibits unique genomic features that underpin its adaptability to extreme environments and its potential in industrial biotechnology. In this study, we present a comparative genomic analysis of two strains, DSM 14834 and HOT.CON.

View Article and Find Full Text PDF

Exploring the Hot Springs of Golan: A Source of Thermophilic Bacteria and Enzymes with Industrial Promise.

Curr Microbiol

February 2024

Bioengineering Department, Faculty of Engineering and Natural Sciences, Istanbul Medeniyet University, Istanbul, 34700, Turkey.

In recent years, there has been a surge in research on extremophiles due to their remarkable ability to survive in harsh environments. Extremophile thermophilic bacteria provide thermostable enzymes for biotechnology and industry. Thermophilic bacteria live in extreme environments like hot springs at 45-80 °C.

View Article and Find Full Text PDF

sp. nov. and sp. nov., two novel members of the phylum isolated from hot spring sediments.

Int J Syst Evol Microbiol

June 2022

State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China.

Two novel species, designated strains SYSU G04041 and SYSU G04536, were isolated from hot spring sediments collected in Yunnan, PR China. Phenotypic and chemotaxonomic analyses, and whole-genome sequencing were used to determine the taxonomic positions of the candidate strains. Phylogenetic analysis using 16S rRNA gene sequence indicated that strain SYSU G04041 showed the highest sequence similarity to A50-7-3 (97.

View Article and Find Full Text PDF

The aim of this study was the isolation and characterization of thermophilic bacteria from hot springs in Jordan. Ten isolates were characterized by morphological, microscopic, biochemical, molecular, and physiological characteristics. Sequencing of the 16S rDNA of the isolates followed by BLAST search revealed that nine strains could be identified as and one isolate as .

View Article and Find Full Text PDF

Thermomonas hydrothermalis is a Gram-negative thermophilic bacterium that is able to live at 50 °C. This ability is attributed to chemical modifications, involving those to bacterial cell-wall components, such as proteins and (glyco)lipids. As the main component of the outer membrane of Gram-negative bacteria, lipopolysaccharides (LPSs) are exposed to the environment, thus they can undergo structural chemical changes to allow thermophilic bacteria to live at their optimal growth temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!