A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

CO2 enhanced chemical vapor deposition growth of few-layer graphene over NiO(x). | LitMetric

The use of mild oxidants in chemical vapor deposition (CVD) reactions has proven enormously useful. This was also true for the CVD growth of carbon nanotubes. As yet though, the use of mild oxidants in the CVD of graphene has remained unexplored. Here we explore the use of CO2 as a mild oxidant during the growth of graphene over Ni with CH4 as the feedstock. Both our experimental and theoretical findings provide in-depth insight into the growth mechanisms and point to the mild oxidants playing multiple roles. Mild oxidants lead to the formation of a suboxide in the Ni, which suppresses the bulk diffusion of C species suggesting a surface growth mechanism. Moreover, the formation of a suboxide leads to enhanced catalytic activity at the substrate surface, which allows reduced synthesis temperatures, even as low as 700 °C. Even at these low temperatures, the quality of the graphene is exceedingly high as indicated by a negligible D mode in the Raman spectra. These findings suggest the use of mild oxidants in the CVD fabrication as a whole could have a positive impact.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn504342eDOI Listing

Publication Analysis

Top Keywords

mild oxidants
20
chemical vapor
8
vapor deposition
8
oxidants cvd
8
formation suboxide
8
mild
6
growth
5
oxidants
5
co2 enhanced
4
enhanced chemical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!