We investigate the mesoscopic resistor-capacitor circuit consisting of a quantum dot coupled to spatially separated Majorana fermion modes in a chiral topological superconductor. We find substantially enhanced relaxation resistance due to the nature of Majorana fermions, which are their own antiparticles and are composed of particle and hole excitations in the same abundance. Further, if only a single Majorana mode is involved, the zero-frequency relaxation resistance is completely suppressed due to a destructive interference. As a result, the Majorana mode opens an exotic dissipative channel on a superconductor which is typically regarded as dissipationless due to its finite superconducting gap.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.113.076801DOI Listing

Publication Analysis

Top Keywords

resistor-capacitor circuit
8
majorana fermion
8
fermion modes
8
modes chiral
8
chiral topological
8
topological superconductor
8
relaxation resistance
8
majorana mode
8
majorana
5
quantum resistor-capacitor
4

Similar Publications

Dissipative split-charge formalism: Ohm's law, Nyquist noise, and non-contact friction.

J Chem Phys

November 2024

Department of Materials Science and Engineering, Saarland University, 66123 Saarbrücken, Germany.

The split-charge equilibration method is extended to describe dissipative charge transfer similarly as the Drude model, whereby the complex-valued frequency-dependent dielectric permittivities or conductivities of dielectrics and metals can be mimicked at non-zero frequencies. To demonstrate its feasibility, a resistor-capacitor circuit is simulated using an all-atom representation for the resistor and capacitor. The dynamics reproduce the expected charging process and Nyquist noise, the latter resulting from the thermal voltages acting on individual split charges.

View Article and Find Full Text PDF

Electrophysiological Recording from a "Model" Cell.

Cold Spring Harb Protoc

March 2024

Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario L5L 1C6, Canada

The muscle cell or neuron membrane is functionally equivalent to a resistor-capacitor (RC) circuit with the membrane resistance and capacitor in parallel. Once inserted inside the membrane, an electrode introduces a serial resistance and small capacitance to the RC circuit. Through a narrow opening at its tip (∼0.

View Article and Find Full Text PDF

The reliability of the resistor-capacitor (RC) time constant of a continuous-time (CT) filter has long been an obstacle with integrated circuits. Due to process and temperature variations in complementary metal-oxide semiconductor (CMOS) technology, the absolute value of the RC time constant may vary over ±50%, which is a big issue for many integrated continuous-time analog circuits. This study proposes an on-chip RC time constant auto-tuning scheme.

View Article and Find Full Text PDF

In this paper, the stochastic sampled-data exponential synchronization problem for Markovian jump neural networks (MJNNs) with time-varying delays and the reachable set estimation (RSE) problem for MJNNs subjected to external disturbances are investigated. Firstly, assuming that two sampled-data periods satisfy Bernoulli distribution, and introducing two stochastic variables to represent the unknown input delay and the sampled-data period respectively, the mode-dependent two-sided loop-based Lyapunov functional (TSLBLF) is constructed, and the conditions for the mean square exponential stability of the error system are derived. Furthermore, a mode-dependent stochastic sampled-data controller is designed.

View Article and Find Full Text PDF

Stable and Accurate Estimation of SOC Using eXogenous Kalman Filter for Lithium-Ion Batteries.

Sensors (Basel)

January 2023

College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325035, China.

The state of charge (SOC) for a lithium-ion battery is a key index closely related to battery performance and safety with respect to the power supply system of electric vehicles. The Kalman filter (KF) or extended KF (EKF) is normally employed to estimate SOC in association with the relatively simple and fast second-order resistor-capacitor (RC) equivalent circuit model for SOC estimations. To improve the stability of SOC estimation, a two-stage method is developed by combining the second-order RC equivalent circuit model and the eXogenous Kalman filter (XKF) to estimate the SOC of a lithium-ion battery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!