A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Influence of wetting on morphology and core content in electrospun core-sheath fibers. | LitMetric

Influence of wetting on morphology and core content in electrospun core-sheath fibers.

ACS Appl Mater Interfaces

Graduate School of Convergence Science and Technology, Department of Nanoscience and Technology, Seoul National University, Suwon-si, Gyeonggi-do, Korea 443-270.

Published: September 2014

Coaxial electrospinning allows easy and cost-effective realization of composite fibers at the nano- and microscales. Different multifunctional materials can be incorporated with distinct localization to specific regimes of the fiber cross section and extended internal interfaces. However, the final composite properties are affected by variations in internal structure, morphology, and material separation, and thus, nanoscale control is mandatory for high-performance application in devices. Here, we present an analysis with unprecedented detail of the cross section of liquid core-functionalized fibers, yielding information that is difficult to reveal. This is based on focused ion beam (FIB) lift-out and allowing HR-TEM imaging of the fibers together with nanoscale resolution chemical analysis using energy dispersive X-ray spectroscopy (EDS). Unexpectedly, core material escapes during spinning and ends up coating the fiber exterior and target substrate. For high core injection rate, a dramatic difference in fiber morphology is found, depending on whether the surface on which the fibers are deposited is hydrophobic or hydrophilic. The latter enhances postspinning extraction of core fluid, resulting in the loss of the functional material and collapsed fiber morphology. Finally, in situ produced TiO2 nanoparticles dispersed in the polymer appear strikingly different when the core fluid is present compared to when the polymer solution is spun on its own.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am504961kDOI Listing

Publication Analysis

Top Keywords

fiber morphology
8
core fluid
8
core
5
fibers
5
influence wetting
4
morphology
4
wetting morphology
4
morphology core
4
core content
4
content electrospun
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!