Chemical exfoliation method was applied to transform bulky assemblies of Au(I)-3-mercaptopropionate (MPA) coordination polymer (CP) to nanosheets and nanostrings using sodium citrate as an exfoliator. The exfoliation process and the structural characteristics of the Au(I)-MPA nanosheets and nanostrings were fully investigated by transmission electron microscopy, atomic force microscopy, UV-vis absorption spectroscopy, X-ray photoelectron spectroscopy and so on. As the structural rigidity and stability of the obtained Au(I)-MPA nanosheets, they are ideal precursors for fabrication of water soluble gold nanoparticle assemblies through progressive pyrolysis. This work provides a significant strategy toward the morphology regulation of CP nanostructures and will inspire further development of this research area.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2014.08.003 | DOI Listing |
Luminescence
February 2025
BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea.
A novel fluorescence-based sensor has been developed for the sensitive detection of malathion, an organophosphorus pesticide, using sulfur-doped quantum dots (SQDs) embedded within graphitic carbon nitride (g-C₃N₄) nanosheets. The SQDs were synthesized through a hydrothermal method, whereas the g-C₃N₄ nanosheets were produced via an exfoliation process. The resulting SQDs@g-C₃N₄ nanocomposite demonstrated outstanding performance for malathion detection in food samples, exhibiting a wide linear detection range of 10-120 μM and an exceptionally low detection limit of 0.
View Article and Find Full Text PDFNanoscale Adv
January 2025
School of Chemical Engineering, Yeungnam University 280 Daehak-Ro Gyeongsan 38541 Republic of Korea
Two-dimensional (2D) hybrid materials, particularly those based on boron nitride (BN) and graphene oxide (GO), have attracted significant attention for energy applications owing to their distinct structural and electronic properties. BN/GO composites uniquely combine the mechanical strength, thermal stability and electrical insulation of BN with the high conductivity and flexibility of GO, creating advanced materials ideal for the fabrication of batteries, supercapacitors and fuel cells. These hybrids offer synergistic effects, enhanced charge transport, increased surface area, and improved chemical stability, making them promising candidates for high-performance energy systems.
View Article and Find Full Text PDFChempluschem
January 2025
Izmir University of Economics: Izmir Ekonomi Universitesi, Department of Mechanical Engineering, Sakarya Cad. No: 156, 35330, Izmir, TURKEY.
Accurate determination of dielectric properties and surface characteristics of two-dimensional (2D) perovskite nanosheets, produced by chemical exfoliation of layered perovskites, is often hindered by exfoliation agent residues such as tetrabutylammonium (TBA). This study investigates the effect of ultraviolet (UV) light exposure duration on the removal of TBA residues from 2D Ca2NaNb4O13- nanosheets deposited on silicon substrates via Langmuir-Blodgett method using atomic force microscopy (AFM). Nanoscale adhesion forces between silicon AFM tips and nanofilms exposed to UV light for 3, 12, 18, and 24 hours were measured.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
National Center for Nanoscience and Technology, No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, China.
The development of highly active and stable cathodes in alkaline solutions is crucial for promoting the commercialization of anion exchange membrane (AEM) electrolyzers, yet it remains a significant challenge. Herein, we synthesized atomically dispersed CoP moieties (CoP-SSC) immobilized on ultrathin carbon nanosheets via a phosphidation exfoliation strategy at medium temperature. The thermodynamic formation process of the Co-P moieties was elucidated using X-ray absorption spectroscopy (XAS) and theoretical calculations.
View Article and Find Full Text PDFAcc Chem Res
January 2025
School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China.
ConspectusCovalent triazine frameworks (CTFs) are a novel class of nitrogen-rich conjugated porous organic materials constructed by robust and functional triazine linkages, which possess unique structures and excellent physicochemical properties. They have demonstrated broad application prospects in gas/molecular adsorption and separation, catalysis, energy conversion and storage, etc. In particular, crystalline CTFs with well-defined periodic molecular network structures and regular pore channels can maximize the utilization of the features of CTFs and promote a deep understanding of the structure-property relationship.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!