Polycyclic aromatic hydrocarbons (PAHs) are a large group of organic contaminants causing hazards to organisms including humans. The objective of the study was to validate the vegetation of dredged sediments with Phragmites australis as an exploitable biostimulation approach to accelerate the depletion of PAHs in nitrogen spiked sediments. Vegetation with Phragmites australis resulted in being an efficient biostimulation approach for the depletion of an aged PAHs contamination (229.67 ± 15.56 μg PAHs/g dry weight of sediment) in dredged sediments. Phragmites australis accelerated the oxidation of the PAHs by rhizodegradation. The phytobased approach resulted in 58.47% of PAHs depletion. The effects of the treatment have been analyzed in terms of both contaminant depletion and changes in relative abundance of the metabolically active Gram positive and Gram negative PAHs degraders. The metabolically active degraders were quantified both in the sediments and in the root endospheric microbial community. Quantitative real-time PCR reactions have been performed on the retrotranscribed transcripts encoding the Gram positive and Gram negative large α subunit (RHDα) of the aromatic ring hydroxylating dioxygenases. The Gram positive degraders resulted in being selectively favored by vegetation with Phragmites australis and mandatory for the depletion of the six ring condensed indeno[1,2,3-cd]pyrene and benzo[g,h,i]perylene.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142154PMC
http://dx.doi.org/10.1155/2014/891630DOI Listing

Publication Analysis

Top Keywords

phragmites australis
16
gram positive
12
polycyclic aromatic
8
aromatic hydrocarbons
8
dredged sediments
8
sediments phragmites
8
biostimulation approach
8
vegetation phragmites
8
metabolically active
8
positive gram
8

Similar Publications

The contamination of rivers by potentially toxic elements (PTEs) is a problem of global importance. The Valles River is Ciudad Valles' (Central Mexico) main source of drinking water. During the four seasons of the year, water samples (n = 6), sediment samples (n = 6), and plants (n = 10) were taken from three study sites selected based on the presence of anthropogenic activities in the Valles River.

View Article and Find Full Text PDF

Photic versus aphotic production of organohalogens from native versus invasive wetland plants-derived dissolved organic matter.

Water Res

January 2025

Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663N. Zhongshan Road, Shanghai 200062, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, Shanghai 200241, China. Electronic address:

Article Synopsis
  • The study explores the less understood process of natural organohalogen formation in dark conditions (aphotic) compared to more well-known light-driven (photochemical) processes, particularly focusing on two types of dissolved organic matter (DOM) from wetland plants.
  • It finds that the invasive plant Spartina alterniflora (SA-DOM) is more prone to photochemical halogenation due to its higher aromatic content, while Phragmites australis (PA-DOM) produces more natural organohalogens (NOHs) during dark reactions.
  • The research highlights the importance of dissolved oxygen levels and suggests that both photochemical and aphotic pathways contribute significantly to NOH formation, making them relevant under varying environmental conditions.
View Article and Find Full Text PDF

This study presents a novel, eco-friendly method for removing methyldiethanolamine (MDEA) from wastewater, addressing its environmental impact and elevated chemical oxygen demand (COD) from gas refineries. We employed two wetland plants, Phragmites australis and Typha latifolia, utilizing a hydroponics approach to assess MDEA removal efficiency. Wastewater samples from the Ilam gas refinery in Iran were tested at varying initial concentrations (50 to 1600 ppm) over three consecutive 7-day periods, with a 1-day rest interval.

View Article and Find Full Text PDF

Horizontal subsurface flow constructed wetlands (HFCWs) are capable of eliminating organic matter and nitrogen while emitting less methane (CH) and nitrous oxide (NO) than free water surface flow wetlands. However, the simultaneous removal of pollutants and reduction of greenhouse gases (GHG) emissions from high-strength wastewater containing high levels of organic matter and ammonium nitrogen (NH-N) has not get been investigated. The influent COD concentration affected the efficiency of nitrogen removal, GHG emissions and the presence of iron from iron ore, but the COD and TP removal efficiencies remained unaffected.

View Article and Find Full Text PDF

Rhizosphere microbial community structure and PICRUSt2 predicted metagenomes function in heavy metal contaminated sites: A case study of the Blesbokspruit wetland.

Sci Total Environ

December 2024

Centre for Competence in Environmental Biotechnology, College of Sciences, Environment and Technology, University of South Africa, Florida Science Campus, South Africa.

This study investigated the microbial diversity inhabiting the roots (rhizosphere) of macrophytes thriving along the Blesbokspruit wetland, South Africa's least conserved Ramsar site. The wetland suffers from decades of pollution from mining wastewater, agriculture, and sewage. The current study focused on three macrophytes: Phragmites australis (common reed), Typha capensis (bulrush), and Eichhornia crassipes (water hyacinth).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!