MicroRNAs as emerging biomarkers and therapeutic targets for pancreatic cancer.

World J Gastroenterol

Marion Gayral, Sébastien Jo, Naima Hanoun, Alix Vignolle-Vidoni, Hubert Lulka, Yannick Delpu, Aline Meulle, Marlène Dufresne, Marine Humeau, Maël Chalret du Rieu, Barbara Bournet, Janick Sèlves, Rosine Guimbaud, Nicolas Carrère, Louis Buscail, Jérôme Torrisani, Pierre Cordelier, Cancer Research Center of Toulouse Team 10, UMR INSERM U1037, Université Paul Sabatier, 31100 Toulouse, France.

Published: August 2014

Despite tremendous efforts from scientists and clinicians worldwide, pancreatic adenocarcinoma (PDAC) remains a deadly disease due to the lack of early diagnostic tools and reliable therapeutic approaches. Consequently, a majority of patients (80%) display an advanced disease that results in a low resection rate leading to an overall median survival of less than 6 months. Accordingly, robust markers for the early diagnosis and prognosis of pancreatic cancer, or markers indicative of survival and/or metastatic disease are desperately needed to help alleviate the dismal prognosis of this cancer. In addition, the discovery of new therapeutic targets is mandatory to design effective treatments. In this review, we will highlight the translational studies demonstrating that microRNAs may soon translate into clinical applications as long-awaited screening tools and therapeutic targets for PDAC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4145758PMC
http://dx.doi.org/10.3748/wjg.v20.i32.11199DOI Listing

Publication Analysis

Top Keywords

therapeutic targets
12
pancreatic cancer
8
micrornas emerging
4
emerging biomarkers
4
therapeutic
4
biomarkers therapeutic
4
targets pancreatic
4
cancer despite
4
despite tremendous
4
tremendous efforts
4

Similar Publications

Combination therapy, which involves using multiple therapeutic modalities simultaneously or sequentially, has become a cornerstone of modern cancer treatment. Graphene-based nanomaterials (GBNs) have emerged as versatile platforms for drug delivery, gene therapy, and photothermal therapy. These materials enable a synergistic approach, improving the efficacy of treatments while reducing side effects.

View Article and Find Full Text PDF

Purpose: Inflammatory processes have been involved in diabetic retinopathy (DR). Interleukin (IL)-17A, a pro-inflammatory cytokine, is associated with DR occurrence and development. However, mechanisms underlying the IL-17A impact on DR need further investigations.

View Article and Find Full Text PDF

Purpose: This study aimed to identify a novel recombinant adeno-associated virus (rAAV) capsid variant that can widely transfect the deep retina through intravitreal injection and to assess their effectiveness and safety in gene delivery.

Methods: By adopting the sequences of various cell-penetrating peptides and inserting them into the capsid modification region of AAV2, we generated several novel variants. The green fluorescent protein (GFP)-carrying variants were screened following intravitreal injection.

View Article and Find Full Text PDF

Cerebellar Transcranial AC Stimulation Produces a Frequency-Dependent Bimodal Cerebellar Output Pattern.

Cerebellum

January 2025

Department of Neuroscience and Physiology, Grossman School of Medicine, NYU Neuroscience Institute, New York University, New York, NY, 10016, USA.

Cerebellar transcranial alternating current stimulation (ctACS) has the potential to be an appealing, non-invasive treatment option for psychiatric and neurological disorders. However, realization of this potential has been limited by gaps in our knowledge of how ctACS affects cerebellar output on single cell and population levels. Previously, we showed that AC stimulation applied to the cerebellar surface produced a strong, frequency-dependent modulation of Purkinje cell (PC) and cerebellar nuclear (CN) cell activity.

View Article and Find Full Text PDF

Since the establishment of the COVID-19 pandemic, a range of studies have been developed to understand the pathogenesis of SARS-CoV-2 infection, vaccine development, and therapeutic testing. However, the possible impacts that these viruses can have on non-target organisms have been explored little, and our knowledge of the consequences of the COVID-19 pandemic for biota is still very limited. Thus, the current study aimed to address this knowledge gap by evaluating the possible impacts of oral exposure of C57Bl/6 J female mice to SARS-CoV-2 lysate protein (at 20 µg/L) for 30 days, using multiple methods, including behavioral assessments, biochemical analyses, and histopathological examinations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!