Generation of compartmentalized pressure by a nuclear piston governs cell motility in a 3D matrix.

Science

Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4370, USA.

Published: August 2014

Cells use actomyosin contractility to move through three-dimensional (3D) extracellular matrices. Contractility affects the type of protrusions cells use to migrate in 3D, but the mechanisms are unclear. In this work, we found that contractility generated high-pressure lobopodial protrusions in human cells migrating in a 3D matrix. In these cells, the nucleus physically divided the cytoplasm into forward and rear compartments. Actomyosin contractility with the nucleoskeleton-intermediate filament linker protein nesprin-3 pulled the nucleus forward and pressurized the front of the cell. Reducing expression of nesprin-3 decreased and equalized the intracellular pressure. Thus, the nucleus can act as a piston that physically compartmentalizes the cytoplasm and increases the hydrostatic pressure between the nucleus and the leading edge of the cell to drive lamellipodia-independent 3D cell migration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5248932PMC
http://dx.doi.org/10.1126/science.1256965DOI Listing

Publication Analysis

Top Keywords

matrix cells
8
actomyosin contractility
8
pressure nucleus
8
generation compartmentalized
4
compartmentalized pressure
4
pressure nuclear
4
nuclear piston
4
piston governs
4
cell
4
governs cell
4

Similar Publications

The extracellular matrix (ECM) is a complex structure involved in many biological processes with collagen being the most abundant protein. Density of collagen fibers in the matrix is a factor influencing cell motility and migration speed. In cancer, this affects the ability of cells to migrate and invade distant tissues which is relevant for designing new therapies.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by hallmark pathologies that affect many brain regions, including the cellular microenvironment with the hippocampus, ultimately leading to profound deficits in cognition. Surprising recent work has shown that factors in the systemic environment regulate the hippocampal cellular niche; age-associated blood-borne factors exacerbate brain aging phenotypes, whereas youth-associated blood-borne factors, including tissue inhibitor of metalloproteinases 2 (TIMP2), reverse or ameliorate features of brain aging. As aging serves as the major risk factor for AD, and recent work shows that systemic factors can regulate AD pathology, we sought to characterize mechanisms by which the systemic environment regulates CNS phenotypes relevant to AD pathology through changes in neuroinflammation.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Mayo Clinic, Jacksonville, FL, USA.

Background: Tauopathies are a group of neurodegenerative disorders which are characterized by the accumulation of abnormal tau protein in the brain. However, the mechanistic understanding of pathogenic tau formation and spread within the brain remains elusive. Astrocytes are major immune reactive cells in the brain and have been implicated in exacerbating tau pathology by releasing extracellular vesicles (AEVs) containing pro-inflammatory cytokines and chemokines upon activation.

View Article and Find Full Text PDF

MYO18B promotes lysosomal exocytosis by facilitating focal adhesion maturation.

J Cell Biol

March 2025

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.

Many cancer cells exhibit increased amounts of paucimannose glycans, which are truncated N-glycan structures rarely found in mammals. Paucimannosidic proteins are proposedly generated within lysosomes and exposed on the cell surface through a yet uncertain mechanism. In this study, we revealed that paucimannosidic proteins are produced by lysosomal glycosidases and secreted via lysosomal exocytosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!