Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae (KPC-Kp) is an emergent pathogen in healthcare-associated infections (HAIs). The aim of this study was to describe HAIs due to KPC-Kp, as well as identify mortality risk factors in cancer patients. In patients diagnosed with HAIs due to KPC-Kp between January 2009 and July 2013, we evaluated only the first infection episode of each patient, analyzing mortality separately for patients treated for ≥48 h with at least one antimicrobial agent proven to display in vitro activity against KPC-Kp. We evaluated variables related to the malignancy, the severity and characteristics of the HAI, and the antimicrobial therapy. We identified 83 HAIs due to KPC-Kp. The 30-day mortality was 57.8 % for all infections and 72.7 % for bacteremic infections. Of the 83 patients, 60 patients received ≥48 h of appropriate treatment and 44 (53 %) developed bacteremia. Ten patients (12 %) were neutropenic at HAI diagnosis and 33 (39.8 %) had infection at the tumor site. The most common HAI was urinary tract infection, seen in 26 patients (31.3 %), followed by primary bloodstream infection, seen in 24 patients (28.9 %). Forty-four patients (73.3 %) received combination antimicrobial therapy, most often including polymyxin (68.3 %). Risk factors for 30-day mortality are high sequential organ failure assessment (SOFA) score, need for intensive care stay at diagnosis of infection, and acute kidney injury; the removal of invasive devices related to infection and treatment with effective antibiotics for KPC-Kp are protective factors. In cancer patients, high mortality is associated with HAI due to KPC-Kp and mortality risk factors are more often related to acute infection than to the underlying disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10096-014-2233-5 | DOI Listing |
Indian J Nephrol
July 2024
Department of Nephrology, M S Ramaiah Medical College, Bangalore, India.
Background: Carbapenem-resistant urinary tract infections (CR-UTIs) are a major global health threat. Many factors contribute to the increasing incidence of CR-UTI. Owing to the limited availability of treatment options, CR-UTIs are highly challenging to treat.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Drug Delivery, Disposition, and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC, 3052, Australia.
Infections caused by fungal pathogens are a global health problem, and have created an urgent need for new antimicrobial strategies. This report details the synthesis of lipidated 2-vinyl-4,4-dimethyl-5-oxazolone (VDM) oligomers an optimized Cu(0)-mediated reversible-deactivation radical polymerization (RDRP) approach. Cholesterol-Br was used as an initiator to synthesize a library of oligo-VDM (degree of polymerisation = 5, 10, 15, 20, and 25), with an α-terminal cholesterol group.
View Article and Find Full Text PDFAntimicrob Agents Chemother
January 2025
Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Ceftriaxone-resistant Enterobacterales remain a public health threat; contemporary data investigating their molecular epidemiology are limited. Five hundred consecutive ceftriaxone-resistant (MIC ≥ 4 µg/mL) Enterobacterales bloodstream isolates were collected between 2018 and 2022 from three Maryland hospitals. Broth microdilution confirmed antibiotic susceptibilities.
View Article and Find Full Text PDFBacteremia is a serious clinical condition in which pathogenic bacteria enter the bloodstream, putting patients at risk of septic shock and necessitating antibiotic treatment. Choosing the most effective antibiotic is crucial not only for resolving the infection but also for minimizing side effects, such as dysbiosis in the healthy microbiome and reducing the selection pressure for antibiotic resistance. This requires prompt identification of the pathogen and antibiotic susceptibility testing, yet these processes are inherently slow in standard clinical microbiology labs due to reliance on growth-based assays.
View Article and Find Full Text PDFUnlabelled: is a high-priority organism for the development of new antibacterial treatments. We found that the antimalarial medication mefloquine (MFQ) permeabilized the bacterial cell membrane of , decreased membrane fluidity, and caused physical injury to the membrane. MFQ also maintained activity across different pH conditions (PH range 5-8).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!