The relationship between peptidergic neurites and paired helical filaments (PHF)-positive neurites in Alzheimer's disease (AD) senile plaques (SP) was studied using combined fluorescence and bright field optics. Cryostat sections of AD hippocampi were first stained by thioflavine-S and immunolabeled with antisera raised against different neuropeptides: somatostatin 28(1-12) (som 28(1-12)), somatostatin 14 (som 14), neuropeptide Y (NPY), cholecystokinin (CCK) and substance P (sP). Secondly, using the elution-restaining procedure, sections were immunolabeled with anti-tau/PHF. In immature SP, clusters of abnormal, swollen neurites were found. The dystrophic, strongly peptidic-positive neurites contained less PHF than the poorly positive ones. Cell bodies, exhibiting a peptidic content, could be found within SP without any alteration. These results suggest the following sequence of events: an extracellular poisoning mechanism, perhaps the amyloid substance, first changes the structure of presynaptic endings and causes the formation of ballooning dystrophic neurites filled with their normal peptidic content. Subsequently, intracellular degradation occurs with formation of the PHF. Then the other structures such as dendrites and perikarya are damaged by the same mechanism. Therefore this phenomenon seems to precede any formation of PHF in SP.
Download full-text PDF |
Source |
---|
Introduction: Alzheimer's disease (AD) lacks a less invasive and early detectable biomarker. Here, we investigated the biomarker potential of miR-501-3p and miR-502-3p using different AD sources.
Methods: MiR-501-3p and miR-502-3p expressions were evaluated in AD CSF exosomes, serum exosomes, familial and sporadic AD fibroblasts and B-lymphocytes by qRT-PCR analysis.
Transl Neurodegener
January 2025
Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-Ro Seo-Gu, Daejeon, 35365, Republic of Korea.
Alzheimer's disease (AD) is the most common type of dementia. Monoclonal antibodies (MABs) serve as a promising therapeutic approach for AD by selectively targeting key pathogenic factors, such as amyloid-β (Aβ) peptide, tau protein, and neuroinflammation. Specifically, based on their efficacy in removing Aβ plaques from the brains of patients with AD, the U.
View Article and Find Full Text PDFBiosci Trends
January 2025
School of Pharmacy, Sungkyunkwan University, Suwon, Korea.
Alzheimer's disease (AD) is the most common type of dementia. Its incidence is rising rapidly as the global population ages, leading to a significant social and economic burden. AD involves complex pathologies, including amyloid plaque accumulation, synaptic dysfunction, and neuroinflammation.
View Article and Find Full Text PDFJ Neuropathol Exp Neurol
January 2025
Department of Biological Sciences, Delaware State University, Dover, DE, United States.
Trans-active response DNA-binding protein-43 (TDP-43) is the major pathological protein in motor neuron disease and TDP-43 pathology has been described in the brains of up to 50% of patients with Alzheimer disease (AD). Hippocampal sclerosis of aging (HS-A), an age-related neuropathology characterized by severe neuronal loss and gliosis in CA1 and/or subiculum, is found in ∼80% of cases that are positive for phosphorylated TDP-43. HS-A is seen as a co-pathology in cases with AD, limbic-predominant age-related TDP-43 encephalopathy neuropathologic changes (LATE-NC), and frontotemporal degeneration.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China. Electronic address:
Cigarette smoke (CS), an indoor environmental pollution, is an environmental risk factor for diverse neurological disorders. However, the neurotoxicological effects and mechanisms of CS on Alzheimer's disease (AD) progression remain unclear. We found that CS accelerated the progression of AD, including increasing β-amyloid (Aβ) plaque deposition and exacerbating cognitive decline.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!