Bipolar tribocharging signal during friction force fluctuations at metal-insulator interfaces.

Angew Chem Int Ed Engl

Tribology Section, Energy Systems Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (USA).

Published: November 2014

Friction and triboelectrification of materials show a strong correlation during sliding contacts. Friction force fluctuations are always accompanied by two tribocharging events at metal-insulator [e.g., polytetrafluoroethylene (PTFE)] interfaces: injection of charged species from the metal into PTFE followed by the flow of charges from PTFE to the metal surface. Adhesion maps that were obtained by atomic force microscopy (AFM) show that the region of contact increases the pull-off force from 10 to 150 nN, reflecting on a resilient electrostatic adhesion between PTFE and the metallic surface. The reported results suggest that friction and triboelectrification have a common origin that must be associated with the occurrence of strong electrostatic interactions at the interface.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201406541DOI Listing

Publication Analysis

Top Keywords

friction force
8
force fluctuations
8
friction triboelectrification
8
bipolar tribocharging
4
tribocharging signal
4
friction
4
signal friction
4
force
4
fluctuations metal-insulator
4
metal-insulator interfaces
4

Similar Publications

Tidal Deformation and Dissipation Processes in Icy Worlds.

Space Sci Rev

January 2025

Faculty of Mathematics and Physics, Department of Geophysics, Charles University, V Holesšovičkách 2, Praha, Praha 8 180 00 Czech Republic.

Tidal interactions play a key role in the dynamics and evolution of icy worlds. The intense tectonic activity of Europa and the eruption activity on Enceladus are clear examples of the manifestation of tidal deformation and associated dissipation. While tidal heating has long been recognized as a major driver in the activity of these icy worlds, the mechanism controlling how tidal forces deform the different internal layers and produce heat by tidal friction still remains poorly constrained.

View Article and Find Full Text PDF

Nature provides many examples of the benefits of nanoscopic surface structures in areas of adhesion and antifouling. Herein, the design, fabrication, and characterization of liquid crystal elastomer (LCE) films are presented with nanowire surface structures that exhibit tunable stimuli-responsive deformations and enhanced adhesion properties. The LCE films are shown to curl toward the side with the nanowires when stimulated by heat or organic solvent vapors.

View Article and Find Full Text PDF

Bionic adhesive materials with 3D complex micro/nanostructures have several advantages of low preload, strong adhesion, switchable adhesion, etc. As the primary high-precision fabrication method for such materials, lithography is inherently limited by its 2D processing capabilities. Achieving complex 3D morphologies typically requires auxiliary processes, such as dipping and double-sided separate UV exposures, which increase both the complexity and limitations of the fabrication process.

View Article and Find Full Text PDF

A functional integral approach to magnon mediated plasmon friction.

Sci Rep

January 2025

School of Physics, Electrical and Energy Engineering, Chuxiong Normal University, Chuxiong, 675000, China.

In this paper, we discuss quantum friction in a system formed by two metallic surfaces separated by a ferromagnetic intermedium of a certain thickness. The internal degrees of freedom in the two metallic surfaces are assumed to be plasmons, while the excitations in the intermediate material are magnons, modeling plasmons coupled to magnons. During relative sliding, one surface moves uniformly parallel to the other, causing friction in the system.

View Article and Find Full Text PDF

A recurring challenge in extracting energy from ambient motion is that devices must maintain high harvesting efficiency and a positive user experience when the interface is undergoing dynamic compression. We show that small amphiphiles can be used to tune friction, haptics, and triboelectric properties by assembling into specific conformations on the surfaces of materials. Molecules that form multiple slip planes under pressure, especially through π-π stacking, produce 80 to 90% lower friction than those that form disordered mesostructures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!