A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

k-t FASTER: Acceleration of functional MRI data acquisition using low rank constraints. | LitMetric

AI Article Synopsis

  • This study introduces k-t FASTER, a new method for accelerating fMRI data collection by leveraging its low-rank data structure for more efficient sampling.
  • Researchers utilized matrix completion techniques to effectively reconstruct under-sampled fMRI data, achieving a significant reduction in reconstruction errors and enhancing the identification of resting state networks (RSNs).
  • The findings suggest that k-t FASTER is an effective way to improve fMRI data analysis speed and quality, particularly beneficial for complex multivariate analyses.

Article Abstract

Purpose: In functional MRI (fMRI), faster sampling of data can provide richer temporal information and increase temporal degrees of freedom. However, acceleration is generally performed on a volume-by-volume basis, without consideration of the intrinsic spatio-temporal data structure. We present a novel method for accelerating fMRI data acquisition, k-t FASTER (FMRI Accelerated in Space-time via Truncation of Effective Rank), which exploits the low-rank structure of fMRI data.

Theory And Methods: Using matrix completion, 4.27× retrospectively and prospectively under-sampled data were reconstructed (coil-independently) using an iterative nonlinear algorithm, and compared with several different reconstruction strategies. Matrix reconstruction error was evaluated; a dual regression analysis was performed to determine fidelity of recovered fMRI resting state networks (RSNs).

Results: The retrospective sampling data showed that k-t FASTER produced the lowest error, approximately 3-4%, and the highest quality RSNs. These results were validated in prospectively under-sampled experiments, with k-t FASTER producing better identification of RSNs than fully sampled acquisitions of the same duration.

Conclusion: With k-t FASTER, incoherently under-sampled fMRI data can be robustly recovered using only rank constraints. This technique can be used to improve the speed of fMRI sampling, particularly for multivariate analyses such as temporal independent component analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4682483PMC
http://dx.doi.org/10.1002/mrm.25395DOI Listing

Publication Analysis

Top Keywords

k-t faster
20
functional mri
8
data acquisition
8
rank constraints
8
sampling data
8
fmri data
8
prospectively under-sampled
8
data
7
fmri
7
k-t
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!