Probing volumetric properties of biomolecular systems by pressure perturbation calorimetry (PPC)--the effects of hydration, cosolvents and crowding.

Methods

TU Dortmund University, Department of Chemistry and Chemical Biology, Physical Chemistry - Biophysical Chemistry, Otto-Hahn Str. 6, D-44227 Dortmund, Germany. Electronic address:

Published: April 2015

Pressure perturbation calorimetry (PPC) is an efficient technique to study the volumetric properties of biomolecules in solution. In PPC, the coefficient of thermal expansion of the partial volume of the biomolecule is deduced from the heat consumed or produced after small isothermal pressure-jumps. The expansion coefficient strongly depends on the interaction of the biomolecule with the solvent or cosolvent as well as on its packing and internal dynamic properties. This technique, complemented with molecular acoustics and densimetry, provides valuable insights into the basic thermodynamic properties of solvation and volume effects accompanying interactions, reactions and phase transitions of biomolecular systems. After outlining the principles of the technique, we present representative examples on protein folding, including effects of cosolvents and crowding, together with a discussion of the interpretation, and further applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymeth.2014.08.007DOI Listing

Publication Analysis

Top Keywords

volumetric properties
8
biomolecular systems
8
pressure perturbation
8
perturbation calorimetry
8
cosolvents crowding
8
probing volumetric
4
properties
4
properties biomolecular
4
systems pressure
4
calorimetry ppc--the
4

Similar Publications

Laser powder bed fusion (LPBF) is an additive manufacturing process that has gained interest for its material fabrication due to multiple advantages, such as the ability to print parts with small feature sizes, good mechanical properties, reduced material waste, etc. However, variations in the key process parameters in LPBF may result in the instantiation of porosity defects and variation in build rate. Particularly, volumetric energy density (VED) is a variable that encapsulates a number of those parameters and represents the amount of energy input from the laser source to the feedstock.

View Article and Find Full Text PDF

This paper investigates the effects of particle morphology (PM) and particle size distribution (PSD) on the micro-macro mechanical behaviours of granular soils through a novel X-ray micro-computed tomography (μCT)-based discrete element method (DEM) technique. This technique contains the grain-scale property extraction by the X-ray μCT, DEM parameter calibration by the one-to-one mapping technique, and the massive derivative DEM simulations. In total, 25 DEM samples were generated with a consideration of six PSDs and four PMs.

View Article and Find Full Text PDF

: Tooth extraction induces significant alveolar ridge dimensional changes and soft tissue modifications, often leading to challenges in implant placement or conventional prosthetic rehabilitation. Alveolar Ridge Preservation (ARP) strategies aim to mitigate post-extraction resorption of the alveolar ridge, enhancing both the quality and quantity of bone and soft tissue during healing. Hyaluronic acid (HYA) has emerged as a promising biological agent for ARP due to its osteoinductive, antimicrobial, and anti-inflammatory properties.

View Article and Find Full Text PDF

Physicochemical properties and biological interaction of calcium silicate-based sealers - in vivo model.

Clin Oral Investig

January 2025

Department of Restorative Dentistry - Endodontics, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, Piracicaba, SP, Brazil.

Objectives: To investigate volumetric changes, in vivo biocompatibility, and systemic migration from eight commercial endodontic sealer materials in paste/paste, powder/liquid, and pre-mixed forms.

Materials And Methods: The sealers AH Plus Bioceramic, AH Plus Jet, BioRoot RCS, MTApex, Bio-C Sealer, Bio-C Sealer Ion+, EndoSequence BC Sealer and NeoSEALER Flo were studied. After characterisation by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), Raman spectroscopy and X-ray diffractometry (XRD), tubes were implanted in Wistar rats' alveolar bone and subcutaneous tissues.

View Article and Find Full Text PDF

Nonlinear homogenised finite element (hFE) models can accurately predict stiffness and strength of ultra-distal sections of the radius and tibia using in vivo HR-pQCT images. Recent findings showed good stiffness prediction at these distal sections but a limited ability to reproduce experimental strain localisation. The coarseness of voxel-based meshes reduces the computational effort at the cost of heavily simplifying the underlying geometry of the cortex, the gradient of material properties, and the resulting strain distribution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!