Conformationally restricted 3,5-O-(di-tert-butylsilylene)-D-galactofuranosyl thioglycoside donor for 1,2-cis α-D-galactofuranosylation.

Carbohydr Res

CIHIDECAR, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, 1428 Buenos Aires, Argentina. Electronic address:

Published: October 2014

A conformationally restricted 2-O-benzyl-3,5-O-di-tert-butylsilylene-β-D-thiogalactofuranoside donor was prepared from benzyl α-D-galactofuranoside and its donor capability was studied for stereoselective 1,2-cis α-D-galactofuranosylation. An unusual chemical behavior in benzylation and hydrogenolysis reactions was observed after the introduction of the 3,5-O-di-tert-butylsilylene protecting group into the galactofuranosyl moiety. The influence of the solvent, temperature, and activating system was evaluated. The NIS/AgOTf system, widely used in 1,2-cis β-arabinofuranosylation, was not satisfactory enough for 1,2-cis galactofuranosylation. However, moderate to high α-selectivity was obtained with all the acceptors employed when using p-NO2PhSCl/AgOTf as a promoting system, in CH2Cl2 at -78°C. The order of the addition of the reactants (premixing or preactivation) did not affect substantially the stereochemical course of the glycosylation reaction. The α-D-Galf-(1→6)-D-Man linkage was achieved with complete diastereoselectivity by preactivation of the conformationally constrained thioglycoside donor.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carres.2014.07.024DOI Listing

Publication Analysis

Top Keywords

conformationally restricted
8
thioglycoside donor
8
12-cis α-d-galactofuranosylation
8
restricted 35-o-di-tert-butylsilylene-d-galactofuranosyl
4
35-o-di-tert-butylsilylene-d-galactofuranosyl thioglycoside
4
donor
4
12-cis
4
donor 12-cis
4
α-d-galactofuranosylation conformationally
4
restricted 2-o-benzyl-35-o-di-tert-butylsilylene-β-d-thiogalactofuranoside
4

Similar Publications

The intrinsically disordered carboxy-terminal domain (CTD) of the largest subunit of RNA Polymerase II (RNAPII) consists of multiple tandem repeats of the consensus heptapeptide Y1-S2-P3-T4-S5-P6-S7. The CTD promotes liquid-liquid phase-separation (LLPS) of RNAPII in vivo. However, understanding the role of the conserved heptad residues in LLPS is hampered by the lack of direct biochemical characterization of the CTD.

View Article and Find Full Text PDF

Cobalt-catalyzed conformationally restricted alkylarylation enables divergent access to Csp-rich N-heterocycles.

Chem Sci

September 2024

Key Laboratory of Organic Synthesis of Jiangsu Province, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China

Article Synopsis
  • Csp-rich N-heterocycles are gaining attention in drug discovery due to their unique structure and spatial orientation, surpassing traditional aromatic compounds.
  • A new cobalt-catalyzed alkylarylation method allows for the efficient creation of diverse Csp-rich N-hetero(spiro)cycles using simple conditions, achieving over 70 different structures.
  • The methodology shows great promise for medicinal chemistry, as it offers broad applicability with good compatibility for functional groups and potential for developing pharmaceutically active molecules.
View Article and Find Full Text PDF

The Hsp90 chaperone is an ATPase enzyme composed of two copies of a three-domain subunit. Hsp90 stabilizes and activates a diverse array of regulatory proteins. Substrates are bound and released by the middle domain through a clamping cycle involving conformational transitions between a dynamic open state and a compact conformationally restricted closed state.

View Article and Find Full Text PDF

Neutrophil extracellular trap (NET) formation is a unique self-defense mechanism of neutrophils; however, it is also involved in many diseases, including atherosclerosis. Resveratrol and catechin are antioxidants with anti-atherosclerotic properties. Here, we examined the effects of resveratrol, catechin, and other related compounds on NET formation.

View Article and Find Full Text PDF

Phenol-based macrocycles play a fundamental role in supramolecular chemistry, but their size has been rather limited. Here we report a novel class of very large, bowl-shaped macrocycles with a diameter of 21.8 Å.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!