Influence of physicochemical and chemical parameters on polybrominated diphenyl ethers in selected landfill leachates, sediments and river sediments from Gauteng, South Africa.

Environ Sci Pollut Res Int

Environmental Chemistry Research Group, Department of Environmental, Water and Earth Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, South Africa.

Published: February 2015

Polybrominated diphenyl ethers (PBDEs) are known to be persistent, endocrine disruptors and bioaccumulative and can cause adverse health effects in animals and humans. In this study, river and landfill sediment samples were collected from selected rivers and municipal solid waste landfill (MSWL) sites across Gauteng Province in South Africa to determine the levels of common PBDEs (BDE-17, BDE-47, BDE-99, BDE-100, BDE-153, BDE-154, BDE-183 and BDE-209). The mean and median concentrations of Σ8 PBDEs from river sediment samples was 2.4 and 0.4 ng g(-1), respectively, and a range of 0.8-114 ng g(-1). The highest concentration of Σ8 PBDEs (43.6 ng g(-1)) was observed at Jukskei River with more than two orders of magnitude greater than the rest. The observed total PBDE concentrations in landfill sediment and leachate samples ranged from 0.8 to 8.4 ng g(-1) and 127-3,702 pg L(-1) for the two matrices. BDE-209 was predominantly detected in most of the sediment samples. Two of the MSWLs which are lined with geomembranes gave the highest concentrations of ∑7 PBDEs (2,678 and 3,702 pg L(-1)). Correlation values for ∑7 PBDEs versus Co (r = 0.65), Cu (r = 0.52), Mn (r = 0.10), Mg (r = 0.76), Ca (r = 0.66) and Ni (r = 0.77) with a statistical significance (p < 0.05) were observed except for Na, Cr, Pb, K, Fe and Zn (p > 0.05). The observed positive correlation may suggest a possible influence of trace metals on PBDE concentrations in leachates. Furthermore, a test of relationship between major anions and PBDEs yielded positive relationship with Cl(-) (r = 0.94, p = 0.16), F(-) (r = 0.97, p = 0.21), Br(-) (r = 0.6, p = 0.29) and NO3 (2-) (r = 0.96, p = 0.08) with an insignificant statistical difference. However, evaluation of the relationship between some water quality parameters (pH, dissolved oxygen and electrical conductivity) gave negative correlation with PBDE concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-014-3443-1DOI Listing

Publication Analysis

Top Keywords

sediment samples
12
pbde concentrations
12
polybrominated diphenyl
8
diphenyl ethers
8
south africa
8
landfill sediment
8
Σ8 pbdes
8
∑7 pbdes
8
pbdes
7
concentrations
5

Similar Publications

Speciation, Distribution and Environmental Risk of Dominant Silver-Containing Nanoparticles in the Taihu Lake, China.

Environ Pollut

January 2025

School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.

Silver-containing nanoparticles (AgCNPs) have attracted increasing concerns because of their potential adverse effects on aquatic ecosystems. However, minimal information is available regarding their concentration, distribution, and speciation in the actual environment. In this work, different species of AgCNPs, including silver nanoparticles (AgNPs), silver chloride (AgCl NPs) and silver sulfide (AgS NPs) in water and sediment samples from Taihu Lake were analyzed by a multistep selective dissolution method combined with single-particle inductively coupled plasma mass spectrometry.

View Article and Find Full Text PDF

Microplastics in Cuban freshwaters: diversity, temporal changes, and effects on extracellular enzymatic activity.

Environ Pollut

January 2025

Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares, Madrid, Spain.

Plastics, as synthetic polymers, are emerging contaminants that can harm organisms and ecosystems. This study investigates the presence of microplastics in sediments of two rivers in western Cuba, assessing their temporal variability, diversity, and characterizing the types of microplastics in these ecosystems. Additionally, the study examines the relationship between microplastic concentrations, the extracellular enzymatic activity of benthic microbial communities, and nutrient levels in sediments.

View Article and Find Full Text PDF

Updated Mini-Review on Polychlorinated Diphenyl Ethers (PCDEs) in Food: Levels and Dietary Intake.

J Food Prot

January 2025

Universitat Rovira i Virgili Laboratory of Toxicology and Environmental Health, School of Medicine, 43201, Reus, Catalonia, Spain. Electronic address:

Polychlorinated diphenyl ethers (PCDEs) are a class of chlorinated aromatic compounds with structural similarities to polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs). Due to their physicochemical properties, PCDEs are highly resistant to degradation and tend to accumulate in soils, sediments, and aquatic organisms, making them capable of entering and persisting in the food chain. As with other persistent organic pollutants (POPs), diet represents the primary route of human exposure to PCDEs.

View Article and Find Full Text PDF

Agricultural practices, specifically the use of antibiotics and other biocides, have repercussions on human, animal and plant health. The aim of this study was to evaluate the levels of Enterobacteriaceae and Enterococcus, as antibiotic resistant marker bacteria, in various matrices across the agro-ecosystem of an antibiotic-free swine farm in Quebec (Canada), namely pig feed, feces, manure, agricultural soil, water and sediment from a crossing stream, and soil from nearby forests. Samples were collected in fall 2022, spring and fall 2023 and spring 2024.

View Article and Find Full Text PDF

This study evaluated a novel ex situ passive sampling biomimetic extraction (BE) method to estimate toxic potency in sediments. Gas chromatography with flame ionization detection (GC-FID) analysis of polydimethylsiloxane fibers equilibrated with field sediments was used to quantify bioavailable polyaromatic hydrocarbons (PAHs) and other unresolved, site-specific contaminant mixtures. This method is biomimetic because contaminants partition to the fiber based on hydrophobicity and abundance, and GC-FID quantification accounts for all constituents absorbed to the fiber that may contribute to toxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!