A mathematical model on stress-strain of the epimysium of skeletal muscles.

J Theor Biol

Biomechanics Laboratory of Physical Education Institute, Inner Mongolia Normal University, Hohhot 010022, PR China; College of Physics and Electronic Information, Inner Mongolia Normal University, Hohhot 010022, PR China.

Published: January 2015

A mathematical model based on the distribution of collagen fibers in ground substance is established to investigate epimysium of skeletal muscle. Under the condition of pinned boundary, incompressible soft biological tissues and the mixed ratio of composite materials, the macro-mechanical properties of the skeletal muscle epimysium are investigated by the proposed model, utilizing the principle of virtual work and the nonlinear theory of elasticity in this study. The effect of physical and geometrical parameters of skeletal muscle epimysium on the stress-strain relationship is also discussed in detail. The result of the investigation concurs with the experimental observations, which demonstrate the effectiveness and validity of the established model.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtbi.2014.08.032DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
12
mathematical model
8
epimysium skeletal
8
muscle epimysium
8
model stress-strain
4
epimysium
4
stress-strain epimysium
4
skeletal
4
skeletal muscles
4
muscles mathematical
4

Similar Publications

Rationale: Bilateral gluteus medius contractures in adults are rare in clinical practice, with only a few cases reported. These contractures may result from repeated intramuscular injections during childhood. Understanding the clinical manifestations, diagnostic process, treatment, and outcomes can provide insights into effective management strategies.

View Article and Find Full Text PDF

The unique architecture of the liver consists of hepatic lobules, dividing the hepatic features of metabolism into 2 distinct zones, namely the pericentral and periportal zones, the spatial characteristics of which are broadly defined as metabolic zonation. R-spondin3 (Rspo3), a bioactive protein promoting the Wnt signaling pathway, regulates metabolic features especially around hepatic central veins. However, the functional impact of hepatic metabolic zonation, regulated by the Rspo3/Wnt signaling pathway, on whole-body metabolism homeostasis remains poorly understood.

View Article and Find Full Text PDF

Purpose: This meta-analysis was carried out to evaluate the clinical effectiveness of rotator cuff repair surgery in treating rotator cuff tears in individuals with mild glenohumeral osteoarthritis (GHOA).

Methods: A computer-based search was conducted across multiple databases including PubMed, Embase, Web of Science, and Cochrane Library using the keywords "Shoulder Joints", "Osteoarthrosis", and "rotator cuff". Only studies focusing on patients with GHOA who underwent rotator cuff repair were considered for inclusion.

View Article and Find Full Text PDF

Leucine has gained recognition as an athletic dietary supplement in recent years due to its various benefits; however, the underlying molecular mechanisms remain unclear. In this study, 20 basketball players were recruited and randomly assigned to two groups. Baseline exercise performance-assessed through a 282-foot sprint, free throws, three-point field goals, and self-rated practice assessments-was measured prior to leucine supplementation.

View Article and Find Full Text PDF

Objectives: To evaluate the value of ultrasound (US) and shear wave velocity (SWV) to assess muscle in postmenopausal women with osteosarcopenia (OSP).

Methods: This study included 145 postmenopausal women, comprising 115 osteopenia/osteoporosis participants without sarcopenia (OP alone) and 30 OSP participants. All received the evaluation of bone mineral density (BMD), appendicular skeletal muscle mass index (ASMI), handgrip strength, calf circumference, 6-meter walking speed, and 5-time chair stand test.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!