A computational model for BMP movement in sea urchin embryos.

J Theor Biol

Department of Biology, Program in Bioinformatics, Center for BioDynamics, Boston University, Boston, MA, USA. Electronic address:

Published: December 2014

Bone morphogen proteins (BMPs) are distributed along a dorsal-ventral (DV) gradient in many developing embryos. The spatial distribution of this signaling ligand is critical for correct DV axis specification. In various species, BMP expression is spatially localized, and BMP gradient formation relies on BMP transport, which in turn requires interactions with the extracellular proteins Short gastrulation/Chordin (Chd) and Twisted gastrulation (Tsg). These binding interactions promote BMP movement and concomitantly inhibit BMP signaling. The protease Tolloid (Tld) cleaves Chd, which releases BMP from the complex and permits it to bind the BMP receptor and signal. In sea urchin embryos, BMP is produced in the ventral ectoderm, but signals in the dorsal ectoderm. The transport of BMP from the ventral ectoderm to the dorsal ectoderm in sea urchin embryos is not understood. Therefore, using information from a series of experiments, we adapt the mathematical model of Mizutani et al. (2005) and embed it as the reaction part of a one-dimensional reaction-diffusion model. We use it to study aspects of this transport process in sea urchin embryos. We demonstrate that the receptor-bound BMP concentration exhibits dorsally centered peaks of the same type as those observed experimentally when the ternary transport complex (Chd-Tsg-BMP) forms relatively quickly and BMP receptor binding is relatively slow. Similarly, dorsally centered peaks are created when the diffusivities of BMP, Chd, and Chd-Tsg are relatively low and that of Chd-Tsg-BMP is relatively high, and the model dynamics also suggest that Tld is a principal regulator of the system. At the end of this paper, we briefly compare the observed dynamics in the sea urchin model to a version that applies to the fly embryo, and we find that the same conditions can account for BMP transport in the two types of embryos only if Tld levels are reduced in sea urchin compared to fly.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtbi.2014.08.026DOI Listing

Publication Analysis

Top Keywords

sea urchin
24
urchin embryos
16
bmp
14
bmp movement
8
bmp transport
8
bmp receptor
8
ventral ectoderm
8
dorsal ectoderm
8
dorsally centered
8
centered peaks
8

Similar Publications

Expression of 11 genes of the Hox cluster (SiHox1, 2, 3, 5, 6, 7, 8, 9/10, 11/13a, 11/13b, and 11/13c) was assessed in the sea urchin Strongylocentrotus intermedius at early developmental stages, including the blastula (13 h post fertilization (hpf)), gastrula (35 hpf), prism (46 hpf), and pluteus (4 and 9 days post fertilization (dpf)) stages. Expression of SiHox7, 11/13b, and 11/13c was observed at the blastula stage; early activation of 11/13c was detected for the first time in regular sea urchins. The expression level was very low at the gastrula and prism stages.

View Article and Find Full Text PDF

Sea urchins, integral to marine ecosystems and valued as a delicacy in Asia and Europe, contain physiologically important long-chain (>C) polyunsaturated fatty acids (PUFA) in their gonads, including arachidonic acid (ARA, 20:4n-6), eicosapentaenoic acid (EPA, 20:5n-3) and unusual non-methylene-interrupted fatty acids (NMI-FA) such as 20:2. Although these fatty acids may partially be derived from their diet, such as macroalgae, the present study on has uncovered multiple genes encoding enzymes involved in long-chain PUFA biosynthesis. Specifically, 3 fatty acid desaturases (FadsA, FadsC1 and FadsC2) and 13 elongation of very-long-chain fatty acids proteins (Elovl-like, Elovl1/7-like, Elovl2/5-like, Elovl4-like, Elovl8-like and Elovl6-like A-H) were identified in their genome and transcriptomes.

View Article and Find Full Text PDF

Molecular response to CO-driven ocean acidification in the larvae of the sea urchin Hemicentrotus pulcherrimus: Evidence from comparative transcriptome analyses.

Mar Environ Res

January 2025

Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China. Electronic address:

In order to explore the impact of CO-driven ocean acidification (OA) on gene expression of sea urchins, gametes of Hemicentrotus pulcherrimus were fertilized and developed to the four-armed larvae in either seawater at current pH levels (pH = 7.98) or in three laboratory-controlled OA conditions (ΔpH = -0.3, -0.

View Article and Find Full Text PDF

Anthropogenic carbon dioxide emissions have been increasing rapidly in recent years, driving pH and oxygen levels to record low concentrations in the oceans. Eastern boundary upwelling systems such as the California Current System (CCS) experience exacerbated ocean acidification and hypoxia (OAH) due to the physical and chemical properties of the transported deeper waters. Research efforts have significantly increased in recent years to investigate the deleterious effects of climate change on marine species, but have not focused on the impacts of simultaneous OAH stressor exposure.

View Article and Find Full Text PDF

Hydrogels are popular materials for desalination and can significantly reduce the vaporization enthalpy of water; however, there are few reports on hydrogels with a controllable multilevel structural design for water evaporation. Herein, a calcium alginate and traditional Chinese ink-based evaporator (CIE) are proposed and fabricated using directed freezing technology to construct radial channels, followed by freeze-drying and physical cross-linking. Because of the squeezing of ice crystals and the shaping effect of the PDMS template, the prepared evaporator exhibits a sea-urchin-shaped highly geometrical centrosymmetric structure with numerous multilevel pore channels, which promotes the rapid transport of water under different solar incidence angles as the sun rotates as well as overcomes the structural shrinkage of the hydrogel caused by insufficient water supply.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!