Mitogen-activated protein kinases (MAPKs) signal is one of the important ways in eukaryotic cell,which adjusts and controls the structure and function of the cell. MAPKs in eukaryotes include p38, ERK, JNK and ERK5, etc. With the deepening research,we found that the activation of p38, ERK, JNK signal pathways were closely related with osteoarthritis (OA) cartilage injury. MAPKs are the key signaling systems involved in the production of matrix metalloproteinases and the regulation of cartilage cell proliferation, apoptosis and differentiation. Expecially the matrix metalloproteinases can accelerate the degradation of articular cartilage. So it has been the new spot in pathogenesis of osteoarthritis study.

Download full-text PDF

Source

Publication Analysis

Top Keywords

p38 erk
8
erk jnk
8
matrix metalloproteinases
8
[research progress
4
progress mapk
4
mapk signal
4
signal pathway
4
pathway pathogenesis
4
pathogenesis osteoarthritis]
4
osteoarthritis] mitogen-activated
4

Similar Publications

extract ameliorates motor dysfunc-tion in mouse Parkinsons disease model through inhibiting neuronal apoptosis.

Zhejiang Da Xue Xue Bao Yi Xue Ban

January 2025

School of Medicine, Hangzhou City University, Zhejiang Provincial Key Laboratory of Novel Targets and Drug Study for Neural Repair, Hangzhou 310015, China.

Objectives: To investigate the protective effects and underlying mechanisms of extract on motor dysfunction in mouse model of Parkinson's disease (PD).

Methods: Eighty C57BL/6 male mice were randomly divided into five groups: control group, PD model group, levodopa treatment group (positive control group), low-dose GP treatment group (LD-GP group), and high-dose GP treatment group (HD-GP group), with 16 mice per group. The PD model was induced by injection of 6-hydroxydopamine into the substantia nigra pars reticulata in mice of last 5 groups.

View Article and Find Full Text PDF

The search for new anticancer compounds is a major focus for researchers in chemistry, biology, and medicine. Cancer affects people of all ages and regions, with rising incidence rates. It does not discriminate by age or gender, making it a significant threat to humanity.

View Article and Find Full Text PDF

Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by immune dysregulation and excessive cytokine production. This study aimed to explore the potential of Camellia sinensis L. water extract (CSE) as a treatment for AD by the impact of CSE on inflammatory responses in keratinocytes, particularly concerning the production of inflammatory cytokines and the modulation of signaling pathways relevant to AD pathogenesis.

View Article and Find Full Text PDF

Objective: To investigate the effect of basic fibroblast growth factor (bFGF) on hypoxia-inducible factor (HIF)-1α expression (Exp) and HIF-1 transcription in breast cancer (BC) cells.

Methods: Human BC cell line T47D was utilized as the research object. Western blot and dual-luciferase system were utilized to detect HIF-1α Exp induced by bFGF in BC cells under hypoxia and normal oxygen conditions, as well as the Exp of phosphorylated ERK1/2, Akt, and p38 proteins, HIF-1α Exp induced by bFGF under kinase inhibitors' action, and HIF-1 transcription, thereby summarizing the impact of bFGF on BC cells and its association with PI-3 K Akt signaling pathway (SPW).

View Article and Find Full Text PDF

Manipulating Mg/Ca ratios in MgO-CaO-SiO bioactive glass for achieving accelerated osteogenic differentiation of human adipose-derived stem cells.

Biomater Adv

January 2025

International Ph.D. Program in Innovative Technology of Biomedical Engineering and Medical Devices, Ming Chi University of Technology, New Taipei City 24301, Taiwan; Department of Mechanical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan; Research Center for Intelligent Medical Devices, Ming Chi University of Technology, New Taipei City 24301, Taiwan. Electronic address:

Cell-containing biomaterial is a promising material for treating nonunion or critical bone defect. Human adipose-derived stem cells (hADSCs) are suitable for bone repair due to their abundance in the abdomen, thighs, and buttocks. However, the low osteogenic capacities of hADSCs hinder their extended development for bone regeneration application.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!