Super Efimov effect of resonantly interacting fermions in two dimensions.

Phys Rev Lett

Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA.

Published: June 2013

We study a system of spinless fermions in two dimensions with a short-range interaction fine-tuned to a p-wave resonance. We show that three such fermions form an infinite tower of bound states of orbital angular momentum ℓ=±1 and their binding energies obey a universal doubly exponential scaling E(3)((n))∝exp(-2e(3πn/4+θ)) at large n. This "super Efimov effect" is found by a renormalization group analysis and confirmed by solving the bound state problem. We also provide an indication that there are ℓ=±2 four-body resonances associated with every three-body bound state at E(4)((n))∝exp(-2e(3πn/4+θ-0.188)). These universal few-body states may be observed in ultracold atom experiments and should be taken into account in future many-body studies of the system.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.110.235301DOI Listing

Publication Analysis

Top Keywords

fermions dimensions
8
bound state
8
super efimov
4
efimov resonantly
4
resonantly interacting
4
interacting fermions
4
dimensions study
4
study system
4
system spinless
4
spinless fermions
4

Similar Publications

Particle exchange statistics beyond fermions and bosons.

Nature

January 2025

Department of Physics and Astronomy, Rice University, Houston, TX, USA.

Article Synopsis
  • There are generally two known types of particle statistics in quantum mechanics: fermions and bosons, along with a rare exception called anyons in two dimensions.
  • The concept of parastatistics, previously thought to be equivalent to fermions and bosons, is now shown to allow for unique particle types that follow distinct exclusion principles.
  • This research introduces a new theory involving these "paraparticles," leading to the discovery of new quasiparticle behaviors in quantum spin models, potentially paving the way for new elementary particle categories in physics.
View Article and Find Full Text PDF

The concept of non-Hermiticity has expanded the understanding of band topology, leading to the emergence of counter-intuitive phenomena. An example is the non-Hermitian skin effect (NHSE), which involves the concentration of eigenstates at the boundary. However, despite the potential insights that can be gained from high-dimensional non-Hermitian quantum systems in areas such as curved space, high-order topological phases and black holes, the realization of this effect in high dimensions remains unexplored.

View Article and Find Full Text PDF

We report on a class of gapped projected entangled pair states (PEPS) with non-trivial Euler topology motivated by recent progress in band geometry. In the non-interacting limit, these systems have optimal conditions relating to saturation of quantum geometrical bounds, allowing for parent Hamiltonians whose lowest bands are completely flat and which have the PEPS as unique ground states. Protected by crystalline symmetries, these states evade restrictions on capturing tenfold-way topological features with gapped PEPS.

View Article and Find Full Text PDF

Entanglement microscopy and tomography in many-body systems.

Nat Commun

January 2025

Department of Physics and HK Institute of Quantum Science & Technology, The University of Hong Kong, Hong Kong, Hong Kong.

Quantum entanglement uncovers the essential principles of quantum matter, yet determining its structure in realistic many-body systems poses significant challenges. Here, we employ a protocol, dubbed entanglement microscopy, to reveal the multipartite entanglement encoded in the full reduced density matrix of the microscopic subregion in spin and fermionic many-body systems. We exemplify our method by studying the phase diagram near quantum critical points (QCP) in 2 spatial dimensions: the transverse field Ising model and a Gross-Neveu-Yukawa transition of Dirac fermions.

View Article and Find Full Text PDF

We present results from a complete next-to-leading order (NLO) calculation of e^{+}e^{-}→ZH in the standard model effective field theory (SMEFT) framework, including all contributions from dimension-six operators. At NLO, there are novel dependencies on CP violating parameters in the gauge sector, on modifications to the Higgs boson self-couplings, on alterations to the top quark Yukawa couplings, and on four-fermion operators involving the electron and the top quark, among others. We show that including only the logarithms resulting from renormalization group scaling can produce misleading results, and further, we explicitly demonstrate the constraining power of combining measurements from different energy scales.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!