Coherent molecule formation in anharmonic potentials near confinement-induced resonances.

Phys Rev Lett

AG Moderne Optik, Institut für Physik, Humboldt-Universität zu Berlin, Newtonstrasse 15, 12489 Berlin, Germany.

Published: May 2013

We perform a theoretical and experimental study of a system of two ultracold atoms with tunable interaction in an elongated trapping potential. We show that the coupling of center-of-mass and relative motion due to an anharmonicity of the trapping potential leads to a coherent coupling of a state of an unbound atom pair and a molecule with a center of mass excitation. By performing the experiment with exactly two particles we exclude three-body losses and can therefore directly observe coherent molecule formation. We find quantitative agreement between our theory of inelastic confinement-induced resonances and the experimental results. This shows that the effects of center-of-mass to relative-motion coupling can have a significant impact on the physics of quantum systems near center-of-mass to relative-motion coupling resonances.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.110.203202DOI Listing

Publication Analysis

Top Keywords

coherent molecule
8
molecule formation
8
confinement-induced resonances
8
trapping potential
8
center-of-mass relative-motion
8
relative-motion coupling
8
formation anharmonic
4
anharmonic potentials
4
potentials confinement-induced
4
resonances perform
4

Similar Publications

We demonstrate a versatile THz waveguide platform for tailored THz-induced orientation and alignment of gas molecules. The underlying waveguide structure is dispersionless, with a refractive index close to one, and enhances the electric as well as the magnetic field up to a factor of five. These properties increase the detected transient birefringence signal by more than an order of magnitude compared to conventional THz free space focusing.

View Article and Find Full Text PDF

Understanding the ultrafast vibrational relaxation following photoexcitation of molecules in a condensed phase is essential to predict the outcome and improve the efficiency of photoinduced molecular processes. Here, the vibrational decoherence and energy relaxation of a binuclear complex, [Pt2(P2O5H2)4]4- (PtPOP), upon electronic excitation in liquid water and acetonitrile are investigated through direct adiabatic dynamics simulations. A quantum mechanics/molecular mechanics (QM/MM) scheme is used where the excited state of the complex is modeled with orbital-optimized density functional calculations while solvent molecules are described using potential energy functions.

View Article and Find Full Text PDF

Branch retinal vein occlusion (BRVO) is a common retinal vascular condition and a significant contributor to vision loss worldwide, particularly in middle-aged and elderly populations. This review synthesizes current knowledge on the epidemiology, pathogenesis, and clinical features of BRVO, alongside recent advancements in diagnostic and therapeutic strategies. BRVO is approximately four times more prevalent than central retinal vein occlusion (CRVO) and often leads to significant vision impairment.

View Article and Find Full Text PDF

Machine learning empowered coherent Raman imaging and analysis for biomedical applications.

Commun Eng

January 2025

College of Biomedical Engineering & Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China.

In situ and in vivo visualization and analysis of functional, endogenous biomolecules in living systems have generated a pivotal impact in our comprehension of biology and medicine. An increasingly adopted approach involves the utilization of molecular vibrational spectroscopy, which delivers notable advantages such as label-free imaging, high spectral density, high sensitivity, and molecule specificity. Nonetheless, analyzing and processing the intricate, multi-dimensional imaging data to extract interpretable and actionable information poses a fundamental obstacle.

View Article and Find Full Text PDF

Triplet-ground-state nonalternant nanographene with high stability and long spin lifetimes.

Nat Commun

January 2025

Department of Chemistry, HKU-CAS Joint Laboratory on New Materials and Shanghai-Hong Kong Joint Laboratory on Chemical Synthesis, The University of Hong Kong, Hong Kong, China.

High-spin carbon-based polyradicals exhibit significant potential for applications in quantum information storage and sensing; however, their practical application is hampered by limited structural diversity and chemical instability. Here, we report a straightforward synthetic and isolation method for synthesizing a nonalternant nanographene (1) with a triplet ground state. Moving beyond the classic m-xylylene scaffold for high-spin organic molecules, seven-five-seven (7-5-7)-membered rings are introduced to create stable high-spin diradicals with half-lives (t) as long as 101 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!