A quantum measurement method based on the quantum nature of antibunching photon emission has been developed to detect single particles without the restriction of the diffraction limit. By simultaneously counting the single-photon and two-photon signals with fluorescence microscopy, the images of nearby nitrogen-vacancy centers in diamond at a distance of 8.5±2.4 nm have been successfully reconstructed. Also their axes information was optically obtained. This quantum statistical imaging technique, with a simple experimental setup, can also be easily generalized in the measuring and distinguishing of other physical properties with any overlapping, which shows high potential in future image and study of coupled quantum systems for quantum information techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.110.153901 | DOI Listing |
J Phys Chem Lett
January 2025
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
We derive an expression to determine the equilibrium probability distribution of a quantum state in contact with a noisy thermal environment that formally separates contributions from quantum and classical forms of probabilistic uncertainty. A statistical mechanical interpretation of this probability distribution enables us to derive an expression for the minimum free energy costs for arbitrary (reversible or irreversible) quantum state changes. Based on this derivation, we demonstrate that─in contrast to classical systems─the free energy required to erase or reset a qubit depends sensitively on both the fidelity of the target state and on the physical properties of the environment, such as the number of quantum bath states, due primarily to the entropic effects of system-bath entanglement.
View Article and Find Full Text PDFSci Rep
January 2025
School of Mathematics and Physics, University of Surrey, GU2 7XH, Guildford, United Kingdom.
Deriving an arrow of time from time-reversal symmetric microscopic dynamics is a fundamental open problem in many areas of physics, ranging from cosmology, to particle physics, to thermodynamics and statistical mechanics. Here we focus on the derivation of the arrow of time in open quantum systems and study precisely how time-reversal symmetry is broken. This derivation involves the Markov approximation applied to a system interacting with an infinite heat bath.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
National University of Singapore, Department of Physics, Singapore 117551.
We uncover emergent universality arising in the equilibration dynamics of multimode continuous-variable systems. Specifically, we study the ensemble of pure states supported on a small subsystem of a few modes, generated by Gaussian measurements on the remaining modes of a globally pure bosonic Gaussian state. We find that beginning from highly entangled, complex global states, such as random Gaussian states and product squeezed states coupled via a deep array of linear optical elements, the induced ensemble attains a universal form, independent of the choice of measurement basis: it is composed of unsqueezed coherent states whose displacements are distributed normally and isotropically, with variance depending on only the particle-number density of the system.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Uppsala University, Department of Physics and Astronomy, Box 516, SE-751 20 Uppsala, Sweden.
The Landau-Lifshitz-Gilbert (LLG) and Landau-Lifshitz (LL) equations play an essential role for describing the dynamics of magnetization in solids. While a quantum analog of the LL dynamics has been proposed in [Phys. Rev.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Chemistry, Maulana Azad National Institute of Technology, Bhopal-462003, India.
Mixing different metal ions at the B site of ABX perovskites offers a promising approach for addressing challenges related to toxicity, stability and performance in optoelectronic applications. One such example is CsPbSnBr which addresses the toxicity issue posed by lead while allowing us to tune optoelectronic properties such as the band gap. In this work, nearly monodisperse CsPbSnBr quantum dots (QDs) were synthesized with variable Pb/Sn compositions, CsPbBr, CsPbSnBr and CsPbSnBr.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!