The second J(π)=2+ state of 12C, predicted over 50 years ago as an excitation of the Hoyle state, has been unambiguously identified using the 12C(γ,α0)(8)Be reaction. The alpha particles produced by the photodisintegration of 12C were detected using an optical time projection chamber. Data were collected at beam energies between 9.1 and 10.7 MeV using the intense nearly monoenergetic gamma-ray beams at the HIγS facility. The measured angular distributions determine the cross section and the E1-E2 relative phases as a function of energy leading to an unambiguous identification of the second 2+ state in 12C at 10.03(11) MeV, with a total width of 800(130) keV and a ground state gamma-decay width of 60(10) meV; B(E2:2(2)+→0(1)+)=0.73(13)e(2) fm(4) [or 0.45(8) W.u.]. The Hoyle state and its rotational 2+ state that are more extended than the ground state of 12C presents a challenge and constraints for models attempting to reveal the nature of three alpha-particle states in 12C. Specifically, it challenges the ab initio lattice effective field theory calculations that predict similar rms radii for the ground state and the Hoyle state.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.110.152502 | DOI Listing |
J Therm Biol
December 2024
School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA; Julie Ann Wrigley Global Futures Laboratory, Arizona State University, Tempe, AZ, 85287, USA. Electronic address:
As global temperatures rise due to climate change, the frequency and intensity of heatwaves are increasing, posing significant threats to human health, productivity, and well-being. Thermoregulation models are important tools for quantifying the risk of extreme heat, providing insights into physiological strain indicators such as core and skin temperatures, sweat rates, and thermal comfort levels. This study evaluated four thermoregulation models of varying complexity, differentiated by the geometry and underlying thermoregulatory mechanisms.
View Article and Find Full Text PDFEur J Appl Physiol
December 2024
Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
Cold-induced vasodilation (CIVD) is a physiological response characterized by cyclic vasodilation occurring within 5-10 min of cold exposure, predominantly in the fingers and toes. This study aimed to determine the roles of body dimensions, specifically surface-to-mass (SM) ratio and sex in modulating CIVD responses. Thirty-nine participants (mean ± SD age: 24 ± 3 yr; height: 174 ± 28 cm; weight: 75.
View Article and Find Full Text PDFTalanta
December 2024
State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, 430074, China. Electronic address:
Accurate in situ carbon isotopic measurements of magnesium-rich carbonates using LA-MC-ICP-MS require effective correction for isobaric interference, particularly from doubly charged Mg ions that can induce δC deviations of several permil. This study focuses on optimizing gas parameters and developing robust correction strategies to improve the accuracy of δC measurements. Experimental results demonstrate that the introduction of nitrogen gas at a flow rate of 4-6 mL/min effectively doubles signal sensitivity while optimizing low helium (0.
View Article and Find Full Text PDFWater Res
December 2024
State Key Laboratory of Urban Water Resources and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China. Electronic address:
Autotrophic denitrification in sulfur packed-bed reactors (SPBR) has been widely employed for treating municipal secondary effluent. However, the fixed volume of packed sulfur in SPBR restricts the ability to adjust denitrification efficiency in response to fluctuating influent nitrate levels, leading to either effluent standard exceedances or unnecessary sulfur consumption. Here, we proposed a novel method for directionally regulating nitrate removal efficiency (NRE) in SPBR by adjusting the bed-immersion-ratio (BIR).
View Article and Find Full Text PDFPhys Med Biol
January 2025
Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia.
the recently developed V79-RBEbiological weighting function (BWF) model is a simple and robust tool for a fast relative biological effectiveness (RBE) assessment for comparing different exposure conditions in particle therapy. In this study, the RBEderived by this model (through the particle and heavy ion transport code system (PHITS) simulatedspectra) is compared with values of RBEusing experimentally derivedspectra from a silicon-on-insulator (SOI) microdosimeter.experimentally measuredspectra are used to calculate an RBEvalue utilizing the V79-RBEBWF model as well as the modified microdosimetric kinetic model (MKM) to produce an RBE-vs-trend for a wide range of ions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!