The inherently disordered nature of hydrogenated amorphous silicon (a-Si:H) obscures the influence of atomic features on the trapping of holes. To address this, we have created a set of over two thousand ab initio structures of a-Si:H and explored the influence of geometric factors on the occurrence of deep hole traps using density-functional theory. Statistical analysis of the relative contribution of various structures to the trap distribution shows that floating bonds and ionization-induced displacements correlate most strongly with hole traps in our ensemble.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.110.146805DOI Listing

Publication Analysis

Top Keywords

hole traps
12
hydrogenated amorphous
8
amorphous silicon
8
origins structural
4
structural hole
4
traps hydrogenated
4
silicon inherently
4
inherently disordered
4
disordered nature
4
nature hydrogenated
4

Similar Publications

The transient dynamics of photocurrents for poly((4-diphenylamino)benzyl acrylate) (PDAA)-based photorefractive (PR) polymers sensitized with perylene bisimide derivative N,N'-diisopropylphenyl-1,6,7,12-tetrachloroperylene-3,4,9,10-tetracarboxyl bisimide (PBI) at various composition ratios were studied. The PR polymer included (4-(diphenylamino)phenyl)methanol (TPAOH) photoconductive plasticizer and (4-(azepan-1-yl)-benzylidene) malononitrile nonlinear optical dye as well, which are needed for inducing PR effects. All the photocurrents measured at 640 nm were well simulated by a two-trapping site model considering photocarrier generation and recombination processes of the charge transfer (CT) complex between PBI and PDAA.

View Article and Find Full Text PDF

The rapid complexation of photogenerated electrons-holes with copper (Cu) greatly limits the large-scale application of cuprous oxide (CuO) as a photocatalyst. Therefore, using a hydrothermal method, a type Ⅱ heterojunction structure was constructed by modifying CuO with cerium (IV) oxide (CeO). The CeO/CuO heterojunction photocatalyst effectively increased the photogenerated electron density and reduced the surface transfer impedance.

View Article and Find Full Text PDF

In this study, graphitic carbon nitride (CN) and tungsten trioxide (WO) were successfully incorporated into bromine (Br)-doped graphitic carbon nitride (BCN) using an in-situ hydrothermal method. The photocatalytic efficiency of the resulting WO/Br-doped CN (WBCN) composites for the removal of tetracycline (TC) antibiotics under sunlight irradiation was evaluated. The mass ratio of WO to Br-doped CN (BCN) significantly influenced TC adsorption and photocatalytic degradation, with an optimal ratio of 9:1.

View Article and Find Full Text PDF

Terahertz Saturable Absorption across Charge Separation in Photoexcited Monolayer Graphene/MoS Heterostructure.

J Phys Chem Lett

January 2025

Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.

Unveiling the nonlinear interactions between terahertz (THz) electromagnetic waves and free carriers in two-dimensional materials is crucial for the development of high-field and high-frequency electronic devices. Herein, we investigate THz nonlinear transport dynamics in a monolayer graphene/MoS heterostructure using time-resolved THz spectroscopy with intense THz pulses as the probe. Following ultrafast photoexcitation, the interfacial charge transfer establishes a nonequilibrium carrier redistribution, leaving free holes in the graphene and trapping electrons in the MoS.

View Article and Find Full Text PDF

Efficient visible-light-driven photocatalytic degradation of antibiotics in water by MXene-derived TiO-supported SiO/TiC composites: Optimisation, mechanism and toxicity evaluation.

Environ Pollut

December 2024

Department of Nano-Chemical Engineering, Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran; Drilling Nanofluid Lab, Shiraz University, Shiraz, Iran; Nanotechnology Research Institute, Shiraz University, Shiraz, Iran. Electronic address:

Photocatalytic technology has emerged as a promising solution to global water contamination, mainly through the effective degradation of persistent pharmaceutical pollutants. However, a few challenges still exist in enhancing degradation efficiency, reducing the toxicity of by-products, and ensuring cost-effective scalability. This study focuses on Tetracycline Hydrochloride (TCH) as an index antibiotic pollutant to evaluate the performance of a novel MXene-derived TiO-supported SiO₂/TiC composite (SMXT) synthesized using ultrasonic and wet impregnation techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!