Single nucleon pickup reactions were performed with a 18.1 MeV/nucleon (14)O beam on a deuterium target. Within the coupled reaction channel framework, the measured cross sections were compared to theoretical predictions and analyzed using both phenomenological and microscopic overlap functions. The missing strength due to correlations does not show significant dependence on the nucleon separation energy asymmetry over a wide range of 37 MeV, in contrast with nucleon removal data analyzed within the sudden-eikonal formalism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.110.122503 | DOI Listing |
Phys Rev Lett
November 2024
Università degli Studi di Milano-Bicocca and INFN, Piazza della Scienza 3, 20216 Milano, Italy.
Semi-inclusive hadron production in longitudinally polarized deep-inelastic lepton-nucleon scattering is a powerful tool for resolving the quark flavor decomposition of the proton's spin structure. We present the full next-to-next-to-leading order QCD corrections to the coefficient functions of polarized semi-inclusive deep-inelastic scattering (SIDIS) in analytical form, enabling the use of SIDIS measurements in precision studies of the proton spin structure. The numerical impact of these corrections is illustrated by a comparison with data of polarized single-inclusive hadron spectra from the DESY HERMES and CERN COMPASS experiments.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
The accuracy of V_{ud} determinations from superallowed β decays critically hinges on control over radiative corrections. Recently, substantial progress has been made on the single-nucleon, universal corrections, while nucleus-dependent effects, typically parametrized by a quantity δ_{NS}, are much less well constrained. Here, we lay out a program to evaluate this correction from effective field theory (EFT), highlighting the dominant terms as predicted by the EFT power counting.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
MOE Key Laboratory of Fundamental Physical Quantities Measurement, Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF, and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.
Phys Chem Chem Phys
December 2024
College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, P. R. China.
Int J Mol Sci
November 2024
School of Science, Northeast Electric Power University, Jilin 131200, China.
Confining protons into an enclosed carbon cage is expected to give rise to unique electronic properties for both the inner proton and the outer cage. In this work, we systematically investigated the geometric and electronic structures of cationic X@C (X = H, HO, and NH), and their corresponding neutral species (X = HO, NH), by quantum chemical density functional theory calculations. We show that C can trap HO, NH, HO and NH at the cage center and only slightly influence their geometries.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!