Single nucleon pickup reactions were performed with a 18.1 MeV/nucleon (14)O beam on a deuterium target. Within the coupled reaction channel framework, the measured cross sections were compared to theoretical predictions and analyzed using both phenomenological and microscopic overlap functions. The missing strength due to correlations does not show significant dependence on the nucleon separation energy asymmetry over a wide range of 37 MeV, in contrast with nucleon removal data analyzed within the sudden-eikonal formalism.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.110.122503DOI Listing

Publication Analysis

Top Keywords

single nucleon
8
limited asymmetry
4
asymmetry dependence
4
dependence correlations
4
correlations single
4
nucleon
4
nucleon transfer
4
transfer single
4
nucleon pickup
4
pickup reactions
4

Similar Publications

Semi-inclusive hadron production in longitudinally polarized deep-inelastic lepton-nucleon scattering is a powerful tool for resolving the quark flavor decomposition of the proton's spin structure. We present the full next-to-next-to-leading order QCD corrections to the coefficient functions of polarized semi-inclusive deep-inelastic scattering (SIDIS) in analytical form, enabling the use of SIDIS measurements in precision studies of the proton spin structure. The numerical impact of these corrections is illustrated by a comparison with data of polarized single-inclusive hadron spectra from the DESY HERMES and CERN COMPASS experiments.

View Article and Find Full Text PDF

The accuracy of V_{ud} determinations from superallowed β decays critically hinges on control over radiative corrections. Recently, substantial progress has been made on the single-nucleon, universal corrections, while nucleus-dependent effects, typically parametrized by a quantity δ_{NS}, are much less well constrained. Here, we lay out a program to evaluate this correction from effective field theory (EFT), highlighting the dominant terms as predicted by the EFT power counting.

View Article and Find Full Text PDF

Constraint on an Exotic Parity-Odd Spin- and Velocity-Dependent Interaction with Atom Interferometer.

Phys Rev Lett

November 2024

MOE Key Laboratory of Fundamental Physical Quantities Measurement, Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF, and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.

Article Synopsis
  • A high-precision test of the spin- and velocity-dependent (SVD) interaction between spin-polarized protons and unpolarized nucleons is conducted using a Bragg atom interferometer with ^{87}Rb atoms.
  • The experiment enhances the precision of free fall measurements to 9.2×10^{-9}, significantly improving on earlier polarized atom experiments.
  • It also provides a new constraint on the SVD interaction coupling, indicating greater sensitivity and opening new avenues for studying physics with polarized-atom interferometers.
View Article and Find Full Text PDF
Article Synopsis
  • Oxygen is essential for the metabolism of non-anaerobic organisms, but the specifics of how triplet oxygen interacts in enzymatic oxidation remain unclear.
  • Recent studies indicate that oxygen activation by oxidases and oxygenases occurs through a process called proton-coupled electron transfer (PCET), which differs from the old hypothesis of single electron transfer (SET).
  • This review highlights recent advancements in understanding these mechanisms and aims to aid in developing more efficient enzyme mutants for disease treatment and environmental pollution management.
View Article and Find Full Text PDF

Confining protons into an enclosed carbon cage is expected to give rise to unique electronic properties for both the inner proton and the outer cage. In this work, we systematically investigated the geometric and electronic structures of cationic X@C (X = H, HO, and NH), and their corresponding neutral species (X = HO, NH), by quantum chemical density functional theory calculations. We show that C can trap HO, NH, HO and NH at the cage center and only slightly influence their geometries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!