We propose to use an ancilla fluxonium qubit to interact with a Majorana qubit hosted by a topological one-dimensional wire. The coupling is obtained using the Majorana qubit-controlled 4π Josephson effect to flux bias the fluxonium qubit. We demonstrate how this coupling can be used to sensitively identify topological superconductivity, to measure the state of the Majorana qubit, to construct 2-qubit operations, and to implement quantum memories with topological protection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.111.107007 | DOI Listing |
Sci Rep
January 2025
Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France.
The thermoelectric properties of hybrid systems based on a single-level quantum dot coupled to a normal-metal/half-metallic lead and attached to a topological superconductor wire are investigated. The topological superconductor wire is modeled by a spinless p-wave superconductor which hosts both a Majorana bound state at its extremity and above gap quasiparticle excitations. The main interest of our investigation is to study the interplay of sub-gap and single-particle tunneling processes and their contributions to the thermoelectric response of the considered system.
View Article and Find Full Text PDFACS Nano
January 2025
Peter Grünberg Institut (PGI-9), Forschungszentrum Jülich, 52425 Jülich, Germany.
The combination of an ordinary s-type superconductor with three-dimensional topological insulators creates a promising platform for fault-tolerant topological quantum computing circuits based on Majorana braiding. The backbone of the braiding mechanism are three-terminal Josephson junctions. It is crucial to understand the transport in these devices for further use in quantum computing applications.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.
Majorana zero modes are predicted to emerge in semiconductor/superconductor interfaces, such as InAs/Al. Majorana modes could be utilized for fault tolerant topological qubits. However, their realization is hindered by materials challenges.
View Article and Find Full Text PDFNano Lett
January 2025
State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China.
Material challenges are the key issue in Majorana research, where surface disorder constrains device performance. Here, we tackle this challenge by embedding PbTe nanowires within a lattice-constant-matched crystal. The wire edges are shaped by self-organized growth instead of lithography, resulting in nearly atomically flat facets along both cross-sectional and longitudinal directions.
View Article and Find Full Text PDFACS Nano
December 2024
School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.
Realizing Majorana Fermions has always been regarded as a crucial and formidable task in topological superconductors. In this work, we report a physical mechanism and a material platform for realizing Majorana zero modes (MZMs). This material platform consists of open circular helix molecule (CHM) proximity coupled with an -wave superconductor (under an external magnetic field) or interconnected-CHM chain coupled with a phase-bias -wave superconducting heterostructure (without any external magnetic field).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!