We apply entropy removal by measurement and feedback to a cold atomic spin ensemble. Using quantum nondemolition probing by Faraday rotation measurement, and feedback by weak optical pumping, we drive the initially random collective spin variable F toward the origin F=0. We use input-output relations and ensemble quantum noise models to describe this quantum control process and identify an optimal two-round control procedure. We observe 12 dB of spin noise reduction, or a factor-of-63 reduction in phase-space volume. The method offers a nonthermal route to generation of exotic entangled states in ultracold gases, including macroscopic singlet states and strongly correlated states of quantum lattice gases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.111.103601 | DOI Listing |
Dalton Trans
January 2025
School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China.
Five alkali metal manganese(III) fluorophosphates, KMn(POF)F (I), RbMn(POF)F (II), RbMn(POF)(PO)F (III), RbMn(POF)(PO)F (IV), and CsMn(POF)F (V), were successfully synthesized using a hydrothermal method. The monofluorophosphate anion (POF) groups work as "chemical scissors" to promote low-dimensional spin structures with the aid of alkali metal cations. I and II had an = 2 uniform chain structure formed by corner-sharing -MnOF octahedra.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Institute of Applied Analysis and Numerical Simulation, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, 70569, Germany.
In this study, we report a comprehensive calculation of the static dipole polarizabilities of group 12 elements using the finite-field approach combined with the relativistic coupled-cluster method, including single, double, and perturbative triple excitations. Relativistic effects are systematically investigated, including scalar-relativistic, spin-orbit coupling (SOC), and fully relativistic Dirac-Coulomb contributions. The final recommended polarizability values are 37.
View Article and Find Full Text PDFNbO(OH) has emerged as a highly attractive photocatalyst based on its chemical stability, energetic band positions, and large active lattice sites. Compared to other various photocatalytic semiconductors, it can be synthesized easily. This study presents a systematic analysis of pristine and doped NbO(OH) based on recent developments in related research.
View Article and Find Full Text PDFNat Commun
January 2025
School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin, 300072, China.
Precisely managing electron transfer pathways throughout the catalytic reaction is paramount for bolstering both the efficacy and endurance of catalysts, offering a pivotal solution to addressing concerns surrounding host structure destabilization and cycling life degradation. This paper describes the integration of B-Ni dual single-atoms within MnO channels to serve as an electronic reservoir to direct the electron transfer route during methane catalytic combustion. Comprehensive analysis discovers that B atoms weaken the interaction between O and Mn atoms by forming bonds with lattice oxygen atoms.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia, USA.
The energies and geometries of the lowest lying singlet and triplet states of the four diradicals formed by removing two H atoms from thiophene have been characterized. We utilized the highly correlated, multireference methods configuration interaction with single and double excitations with and without the Pople correction for size-extensivity (MR-CISD+Q and MR-CISD) and averaged quadratic coupled cluster theory (MR-AQCC). CAS (8,7) and CAS (10,8) active spaces involving σ, σ*, π, and π* orbitals were employed along with the cc-pVDZ and cc-pVTZ basis sets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!