The charmless decays B±→K± π+ π- and B±→K± K+ K- are reconstructed using data, corresponding to an integrated luminosity of 1.0  fb(-1), collected by LHCb in 2011. The inclusive charge asymmetries of these modes are measured as ACP(B±→K± π+ π-)=0.032±0.008 (stat)±0.004 (syst)±0.007(J/ψK±) and ACP(B±→K± K+ K-)=-0.043±0.009 (stat)±0.003 (syst)±0.007(J/ψK±), where the third uncertainty is due to the CP asymmetry of the B±→J/ψK± reference mode. The significance of ACP(B±→K± K+ K-) exceeds three standard deviations and is the first evidence of an inclusive CP asymmetry in charmless three-body B decays. In addition to the inclusive CP asymmetries, larger asymmetries are observed in localized regions of phase space.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.111.101801DOI Listing

Publication Analysis

Top Keywords

phase space
8
b±→k± π+
8
π+ π-
8
π- b±→k±
8
measurement violation
4
violation phase
4
b±→k±
4
space b±→k±
4
b±→k± decays
4
decays charmless
4

Similar Publications

X-ray Nanoimaging of a Heterogeneous Structural Phase Transition in VO.

Nano Lett

January 2025

Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States.

Controlling the Mott transition through strain engineering is crucial for advancing the development of memristive and neuromorphic computing devices. Yet, Mott insulators are heterogeneous due to intrinsic phase boundaries and extrinsic defects, posing significant challenges to fully understanding the impact of microscopic distortions on the local Mott transition. Here, using a synchrotron-based scanning X-ray nanoprobe, we studied the real-space structural heterogeneity during the structural phase transition in a VO thin film.

View Article and Find Full Text PDF

Experimental arrangement to study the impact of atmospheric turbulence on user-defined beams.

Rev Sci Instrum

January 2025

Applied and Adaptive Optics Laboratory, Department of Physics, Indian Institute of Space Science and Technology, Thiruvananthapuram 695547, Kerala, India.

In the present work, we propose an experimental setup to investigate the effect of atmospheric turbulence on user-defined beams. The user-defined beams were formed by writing reconfigurable patterns on a spatial light modulator, allowing the impact of atmospheric turbulence to be investigated simultaneously and in real time. The programmable controllability provides several flexibilities to the system, such as the ability to create different beam types simultaneously, control the separation between different beams, compensate for aberrations, and easily switch between different beam types.

View Article and Find Full Text PDF

Anionic modulation induces molecular polarity in a three-component crown ether system.

Dalton Trans

January 2025

School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, People's Republic of China.

Three-component crown ether phase change materials are characterized by a structural phase change in response to external stimuli such as temperature and electric or magnetic fields, resulting in significant changes in physical properties. In this work, we designed and synthesized two novel host-guest crown ether molecules [(PTFMA)(15-crown-5)ClO] (1) and [(PTFMA)(15-crown-5)PF] (2), through the reaction of -trifluoromethylaniline (PTFMA) with 15-crown-5 in perchloric acid or hexafluorophosphoric acid aqueous solution. Compound 1 undergoes a structural change from the non-centrosymmetric space group (2) to the centrosymmetric space group (2/) with increasing temperature.

View Article and Find Full Text PDF

Polaritons are central to the development of nanophotonics, as they provide mechanisms for manipulating light at the nanoscale. A key advancement has been the demonstration of polariton canalization in which the energy flow is directed along a single direction. An intriguing case is the canalization of ray polaritons, characterized by an enhanced density of optical states.

View Article and Find Full Text PDF

Of the few weberite-type Na-ion cathodes explored to date, NaFeF exhibits the best performance, with capacities up to 184 mAh/g and energy densities up to 550 Wh/kg reported for this material. However, the development of robust structure-property relationships for this material is complicated by its tendency to form as a mixture of metastable polymorphs, and transform to a lower-energy Na FeF perovskite compound during electrochemical cycling. Our first-principles-guided exploration of Fe-based weberite solid solutions with redox-inactive Mg and Al predicts an enhanced thermodynamic stability of NaMg Fe F as the Mg content is increased, and the = 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!