Shear flow of an electrically charged fluid by ion concentration polarization: scaling laws for electroconvective vortices.

Phys Rev Lett

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA and Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.

Published: March 2013

We consider electroconvective fluid flows initiated by ion concentration polarization (ICP) under pressure-driven shear flow, a scenario often found in many electrochemical devices and systems. Combining scaling analysis, experiment, and numerical modeling, we reveal unique behaviors of ICP under shear flow: a unidirectional vortex structure, its height selection, and vortex advection. Determined by both the external pressure gradient and the electric body force, the dimensionless height of the sheared electroconvective vortex is shown to scale as (ϕ(2)/U(HP))(1/3), which is a clear departure from the previous diffusion-drift model prediction. To the best of our knowledge, this is the first microscopic characterization of ion concentration polarization under shear flow, and it firmly establishes electroconvection as the mechanism for an overlimiting current in realistic, large-area ion exchange membrane systems such as electrodialysis. The new scaling law has significant implications on the optimization of electrodialysis and other electrochemical systems.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.110.114501DOI Listing

Publication Analysis

Top Keywords

shear flow
16
ion concentration
12
concentration polarization
12
shear
4
flow electrically
4
electrically charged
4
charged fluid
4
ion
4
fluid ion
4
polarization scaling
4

Similar Publications

Optimizing Nanobubble Production in Ceramic Membranes: Effects of Pore Size, Surface Hydrophobicity, and Flow Conditions on Bubble Characteristics and Oxygenation.

Langmuir

January 2025

John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 Martin Luther King Blvd., Newark, New Jersey 07102, United States.

Precise control of nanobubble size is essential for optimizing the efficiency and performance of nanobubble applications across diverse fields, such as agriculture, water treatment, and medicine. Producing fine bubbles, including nanobubbles, is commonly achieved by purging gas through porous media, such as ceramic or polymer membranes. Many operational factors and membrane properties can significantly influence nanobubble production and characteristics.

View Article and Find Full Text PDF

Amplification of Secondary Flow at the Initiation Site of Intracranial Sidewall Aneurysms.

Cardiovasc Eng Technol

January 2025

Department of Hydrodynamic Systems, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 1-3, Budapest, 1111, Hungary.

Purpose: The initiation of intracranial aneurysms has long been studied, mainly by the evaluation of the wall shear stress field. However, the debate about the emergence of hemodynamic stimuli still persists. This paper builds on our previous hypothesis that secondary flows play an important role in the formation cascade by examining the relationship between flow physics and vessel geometry.

View Article and Find Full Text PDF

Objective: Both the en bloc island technique and the branched graft technique (BGT) present advantages but also limitations in aortic arch surgery. Here is the first presentation of an innovative prosthesis for aortic arch replacement, conceived to overcome the disadvantages of both techniques.

Methods: The novel ISLAND graft is a tubular Dacron or hybrid prosthesis with an additional extended Dacron graft ("bubble") on the superior aspect, for en bloc island graft anastomosis.

View Article and Find Full Text PDF

Bidirectional effects of neutrophils on biofilms .

J Oral Microbiol

January 2025

Periodontal Research Group, Department of Dentistry, School of Health Sciences, College of Medicine and Health, University of Birmingham, Edgbaston, UK.

Background: is a commensal bacterium and an early biofilm coloniser found in the human oral cavity. One of the biofilm matrix constituents is bacterial extracellular DNA (eDNA). Neutrophils are innate immune cells that respond to biofilms, employing antimicrobial mechanisms such as neutrophil extracellular trap (NET) and reactive oxygen species (ROS) release.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!