We consider electroconvective fluid flows initiated by ion concentration polarization (ICP) under pressure-driven shear flow, a scenario often found in many electrochemical devices and systems. Combining scaling analysis, experiment, and numerical modeling, we reveal unique behaviors of ICP under shear flow: a unidirectional vortex structure, its height selection, and vortex advection. Determined by both the external pressure gradient and the electric body force, the dimensionless height of the sheared electroconvective vortex is shown to scale as (ϕ(2)/U(HP))(1/3), which is a clear departure from the previous diffusion-drift model prediction. To the best of our knowledge, this is the first microscopic characterization of ion concentration polarization under shear flow, and it firmly establishes electroconvection as the mechanism for an overlimiting current in realistic, large-area ion exchange membrane systems such as electrodialysis. The new scaling law has significant implications on the optimization of electrodialysis and other electrochemical systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.110.114501 | DOI Listing |
Langmuir
January 2025
John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 Martin Luther King Blvd., Newark, New Jersey 07102, United States.
Precise control of nanobubble size is essential for optimizing the efficiency and performance of nanobubble applications across diverse fields, such as agriculture, water treatment, and medicine. Producing fine bubbles, including nanobubbles, is commonly achieved by purging gas through porous media, such as ceramic or polymer membranes. Many operational factors and membrane properties can significantly influence nanobubble production and characteristics.
View Article and Find Full Text PDFCardiovasc Eng Technol
January 2025
Department of Hydrodynamic Systems, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 1-3, Budapest, 1111, Hungary.
Purpose: The initiation of intracranial aneurysms has long been studied, mainly by the evaluation of the wall shear stress field. However, the debate about the emergence of hemodynamic stimuli still persists. This paper builds on our previous hypothesis that secondary flows play an important role in the formation cascade by examining the relationship between flow physics and vessel geometry.
View Article and Find Full Text PDFInt J Cardiovasc Imaging
January 2025
Translation Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland.
Innovations (Phila)
December 2024
Department of Neurosciences and Rehabilitation, Cardiac Surgery Unit, University of Ferrara, Italy.
Objective: Both the en bloc island technique and the branched graft technique (BGT) present advantages but also limitations in aortic arch surgery. Here is the first presentation of an innovative prosthesis for aortic arch replacement, conceived to overcome the disadvantages of both techniques.
Methods: The novel ISLAND graft is a tubular Dacron or hybrid prosthesis with an additional extended Dacron graft ("bubble") on the superior aspect, for en bloc island graft anastomosis.
J Oral Microbiol
January 2025
Periodontal Research Group, Department of Dentistry, School of Health Sciences, College of Medicine and Health, University of Birmingham, Edgbaston, UK.
Background: is a commensal bacterium and an early biofilm coloniser found in the human oral cavity. One of the biofilm matrix constituents is bacterial extracellular DNA (eDNA). Neutrophils are innate immune cells that respond to biofilms, employing antimicrobial mechanisms such as neutrophil extracellular trap (NET) and reactive oxygen species (ROS) release.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!