Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We introduce a scheme to perform dissipation-assisted quantum information processing in ion traps considering realistic decoherence rates, for example, due to motional heating. By means of continuous sympathetic cooling, we overcome the trap heating by showing that the damped vibrational excitations can still be exploited to mediate coherent interactions as well as collective dissipative effects. We describe how to control their relative strength experimentally, allowing for protocols of coherent or dissipative generation of entanglement. This scheme can be scaled to larger ion registers for coherent or dissipative many-body quantum simulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.110.110502 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!