Spin-nematic and spin-density-wave orders in spatially anisotropic frustrated magnets in a magnetic field.

Phys Rev Lett

Condensed Matter Theory Laboratory, RIKEN, Wako, Saitama 351-0198, Japan.

Published: February 2013

We develop a microscopic theory of finite-temperature spin-nematic orderings in three-dimensional spatially anisotropic magnets consisting of weakly coupled frustrated spin-1/2 chains with nearest-neighbor and next-nearest-neighbor couplings in a magnetic field. Combining a field theoretical technique with density-matrix renormalization group results, we complete finite-temperature phase diagrams in a wide magnetic-field range that possess spin-bond-nematic and incommensurate spin-density-wave ordered phases. The effects of a four-spin interaction are also studied. The relevance of our results to quasi-one-dimensional edge-shared cuprate magnets such as LiCuVO(4) is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.110.077206DOI Listing

Publication Analysis

Top Keywords

spatially anisotropic
8
magnetic field
8
spin-nematic spin-density-wave
4
spin-density-wave orders
4
orders spatially
4
anisotropic frustrated
4
frustrated magnets
4
magnets magnetic
4
field develop
4
develop microscopic
4

Similar Publications

Dynamics of a single anisotropic particle under various resetting protocols.

J Phys Condens Matter

December 2024

Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, Düsseldorf, 40225, GERMANY.

We study analytically the dynamics of an anisotropic particle subjected to different stochastic resetting schemes in two dimensions. The Brownian motion of shape-asymmetric particles in two dimensions results in anisotropic diffusion at short times, while the late-time transport is isotropic due to rotational diffusion. We show that the presence of orientational resetting promotes the anisotropy to late times.

View Article and Find Full Text PDF

Biomacromolecular networks with multiscale fibrillar structures are characterized by exceptional mechanical properties, making them attractive architectures for synthetic materials. However, there is a dearth of synthetic polymeric building blocks capable of forming similarly structured networks. Bottlebrush polymers (BBPs) are anisotropic graft polymers with the potential to mimic and replace biomacromolecules such as tropocollagen for the fabrication of synthetic fibrillar networks; however, a longstanding limitation of BBPs has been the lack of rigidity necessary to access the lyotropic ordering that underpins the formation of collagenous networks.

View Article and Find Full Text PDF

Controlled Lipid Domain Positioning and Polarization in Confined Minimal Cell Models.

Angew Chem Int Ed Engl

December 2024

Ecole Normale Supérieure, Department of Chemistry, 24, rue Lhomond, 75005, Paris, FRANCE.

Giant unilamellar vesicles (GUVs) are widely used minimal cell models where essential biological features can be reproduced, isolated and studied. Although precise spatio-temporal distribution of membrane domains is a process of crucial importance in living cells, it is still highly challenging to generate anisotropic GUVs with domains at user-defined positions. Here we describe a novel and robust method to control the spatial position of lipid domains of liquid-ordered (Lo) / liquid-disordered (Ld) phase in giant unilamellar vesicles (GUVs).

View Article and Find Full Text PDF

Adaptive Compression and Reconstruction for Multidimensional Medical Image Data: A Hybrid Algorithm for Enhanced Image Quality.

J Imaging Inform Med

December 2024

Department of Computer Science and Engineering, College of Engineering, Anna University, Guindy, Chennai, Tamilnadu, India.

Spatial regions within images typically hold greater priority over adjacent areas, especially in the context of medical images (MI) where minute details can have significant clinical implications. This research addresses the challenge of compressing medical image dimensions without compromising critical information by proposing an adaptive compression algorithm. The algorithm integrates a modified image enhancement module, clustering-based segmentation, and a variety of lossless and lossy compression techniques.

View Article and Find Full Text PDF

A Versatile Method to Produce Monomodal Nano- to Micro-Fiber Fragments as Fillers for Biofabrication.

Small Methods

December 2024

Department for Functional Materials in Medicine and Dentistry, University Hospital of Würzburg, Pleicherwall 2, D-97070, Würzburg, Germany.

A key goal of biofabrication is the production of 3D tissue models with biomimetic properties. In natural tissues, fibrils-mainly composed of collagen-play a critical role in stabilizing and spatially organizing the extracellular matrix. To use biomimetic fibers for reinforcing bioinks in 3D printing, fiber fragmentation is necessary to prevent nozzle clogging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!