Quantifying the nonclassicality of operations.

Phys Rev Lett

Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom.

Published: February 2013

Deep insight can be gained into the nature of nonclassical correlations by studying the quantum operations that create them. Motivated by this we propose a measure of nonclassicality of a quantum operation utilizing the relative entropy to quantify its commutativity with the completely dephasing operation. We show that our measure of nonclassicality is a sum of two independent contributions, the generating power--its ability to produce nonclassical states out of classical ones, and the distinguishing power--its usefulness to a classical observer for distinguishing between classical and nonclassical states. Each of these effects can be exploited individually in quantum protocols. We further show that our measure leads to an interpretation of quantum discord as the difference in superdense coding capacities between a quantum state and the best classical state when both are produced at a source that makes a classical error during transmission.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.110.070502DOI Listing

Publication Analysis

Top Keywords

measure nonclassicality
8
nonclassical states
8
quantum
5
classical
5
quantifying nonclassicality
4
nonclassicality operations
4
operations deep
4
deep insight
4
insight gained
4
gained nature
4

Similar Publications

Measuring topological invariants for higher-order exceptional points in quantum three-mode systems.

Nat Commun

November 2024

Fujian Key Laboratory of Quantum Information and Quantum Optics, College of Physics and Information Engineering, Fuzhou University, Fuzhou, China.

Owing to the presence of exceptional points (EPs), non-Hermitian (NH) systems can display intriguing topological phenomena without Hermitian analogs. However, experimental characterizations of exceptional topological invariants have been restricted to second-order EPs (EP2s) in classical or semiclassical systems. We here propose an NH multi-mode system with higher-order EPs, each of which is underlain by a multifold-degenerate multipartite entangled eigenstate.

View Article and Find Full Text PDF

The nonclassicality of a macroscopic single-mode optical superposition state is potentially convertible into entanglement, when the state is mixed with the vacuum on a beam splitter. Considering light beams with polarization degree of freedom in Euclidean space as coherent product states in a bipartite Hilbert space, we propose a method to convert the two orthogonal polarizations into simultaneous entanglement and classical nonseparability through nonclassicality in the superpositions of coherent and displaced Fock states. Equivalent Bell state emerges from the resulted superpositions and the proportion of mixed entanglement and nonseparablity is determined by the displacement amplitudes along the polarization directions.

View Article and Find Full Text PDF

Testing Whether Gravity Acts as a Quantum Entity When Measured.

Phys Rev Lett

November 2024

Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, England, United Kingdom.

Article Synopsis
  • Classical systems allow measurements without causing disturbance, while quantum systems do not, particularly in the context of gravity.
  • The proposed experimental setup involves multiple interferometers to measure a gravitational field created by a spatial superposition, aiming to demonstrate nonclassical effects.
  • This test is unique as it doesn't rely on specific nonclassical gravity forms or entanglement, and it can detect quantum measurement disturbance regardless of decoherence rates, making it device independent.
View Article and Find Full Text PDF

Linear Program for Testing Nonclassicality and an Open-Source Implementation.

Phys Rev Lett

February 2024

International Centre for Theory of Quantum Technologies, University of Gdańsk, 80-309 Gdańsk, Poland.

A well-motivated method for demonstrating that an experiment resists any classical explanation is to show that its statistics violate generalized noncontextuality. We here formulate this problem as a linear program and provide an open-source implementation of it which tests whether or not any given prepare-measure experiment is classically explainable in this sense. The input to the program is simply an arbitrary set of quantum states and an arbitrary set of quantum effects; the program then determines if the Born rule statistics generated by all pairs of these can be explained by a classical (noncontextual) model.

View Article and Find Full Text PDF

Mass-Independent Scheme to Test the Quantumness of a Massive Object.

Phys Rev Lett

January 2024

Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, England, United Kingdom.

The search for empirical schemes to evidence the nonclassicality of large masses is a central quest of current research. However, practical schemes to witness the irreducible quantumness of an arbitrarily large mass are still lacking. To this end, we incorporate crucial modifications to the standard tools for probing the quantum violation of the pivotal classical notion of macrorealism (MR): while usual tests use the same measurement arrangement at successive times, here we use two different measurement arrangements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!