We study thermal and charge transport in a three-terminal setup consisting of one superconducting and two ferromagnetic contacts. We predict that the simultaneous presence of spin filtering and of spin-dependent scattering phase shifts at each of the two interfaces will lead to very large nonlocal thermoelectric effects both in clean and in disordered systems. The symmetries of thermal and electric transport coefficients are related to fundamental thermodynamic principles by the Onsager reciprocity. Our results show that a nonlocal version of the Onsager relations for thermoelectric currents holds in a three-terminal quantum coherent ferromagnet-superconductor heterostructure including a spin-dependent crossed Andreev reflection and coherent electron transfer processes.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.110.047002DOI Listing

Publication Analysis

Top Keywords

nonlocal thermoelectric
8
thermoelectric effects
8
onsager relations
8
nonlocal
4
effects nonlocal
4
nonlocal onsager
4
relations three-terminal
4
three-terminal proximity-coupled
4
proximity-coupled superconductor-ferromagnet
4
superconductor-ferromagnet device
4

Similar Publications

To improve the performance of Radio Frequency Identification (RFID) multi-label systems, the multi-label network structure needs to be quickly located and optimized. A multi-label location measurement method based on the NLM-Harris algorithm is proposed in this paper. Firstly, multi-label geometric distribution images are obtained through a label image acquisition system of a multi-label semi-physical simulation platform with two vertical Charge-Coupled Device (CCD) cameras, and Gaussian noise is added to the image to simulate thermoelectric interference.

View Article and Find Full Text PDF

In the current work, we investigate a novel technique specialized in stability perturbation theory to analyze the primary variations such as thermal, carrier, elastic, and mechanical waves in photothermal theory. The interface of the non-local semiconductor material is utilized to study the stability analysis. The problem is established using a 1D opto-electronic-thermoelastic deformation in the context of the photo-thermoelasticity (PTE) framework.

View Article and Find Full Text PDF

We experimentally demonstrate the highly-efficient nonlocal erasing and writing of ferroelectric domains using a femtosecond laser in lithium niobate. Based on the induction of a focused infrared femtosecond laser without any relative displacement or additional treatment, the original multiple ferroelectric domains can be either erased (erasing operation) or elongated (writing operation) simultaneously in the crystal, depending on the laser focusing depth and the laser pulse energy. In the erasing operation, the original multiple ferroelectric domains can be cleared completely by just one laser induction, while in the writing operation, the average length of the ferroelectric domains can be elongated up to 235 µm by three laser inductions.

View Article and Find Full Text PDF

Dynamic properties of Majorana bound states (MBSs) coupled double-quantum-dot (DQD) interferometer threaded with ac magnetic flux are investigated, and the time-averaged thermal current formulas are derived. Photon-assisted local and nonlocal Andreev reflections contribute efficiently to the charge and heat transports. The modifications of source-drain electric, electric-thermal, thermal conductances (,,), Seebeck coefficient (), and thermoelectric figure of merit () versus AB phase have been calculated numerically.

View Article and Find Full Text PDF

Non-local triple quantum dot thermometer based on Coulomb-coupled systems.

Sci Rep

September 2022

Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.

Recent proposals towards non-local thermoelectric voltage-based thermometry, in the conventional dual quantum dot set-up, demand an asymmetric step-like system-to-reservoir coupling around the ground states for optimal operation (Physica E, 114, 113635, 2019). In addition to such demand for unrealistic coupling, the sensitivity in such a strategy also depends on the average measurement terminal temperature, which may result in erroneous temperature assessment. In this paper, we propose non-local current based thermometry in the dual dot set-up as a practical alternative and demonstrate that in the regime of high bias, the sensitivity remains robust against fluctuations of the measurement terminal temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!