Ellagic acid reduces L-type Ca2+ current and contractility through modulation of NO-GC-cGMP pathways in rat ventricular myocytes.

J Cardiovasc Pharmacol

Departments of *Biophysics; and †Pharmacology, Faculty of Medicine, Akdeniz University, Antalya, Turkey; and ‡Department of Cardiovascular, Respiratory, Nephrological, Anesthesiological and Geriatric Sciences, Sapienza University of Rome, Rome, Italy.

Published: December 2014

There is evidence that phenolic structure may have biological functions. Ellagic acid (EA), a phenolic compound, has been suggested to have cardioprotective effects. EA effects were investigated on cardiac Ca currents and contractility in rat ventricular myocytes to elucidate the underlying mechanisms. Freshly isolated ventricular myocytes from rat hearts were used. EA dose-dependently reduced Ca currents (ICaL) with EC50 = 23 nM, whereas it did not affect the inactivation and reactivation parameters. Inhibition of adenylate cyclase by SQ-22536 (10 μM) and probucol (5 μM) had no effect on EA modulation of ICaL. Nitric oxide synthase block by L-NAME (500 μM) and of guanylate cyclase by ODQ (1 μM) abolished EA inhibitory effects on ICaL. Moreover, EA blunted ventricular myocytes' fractional shortening in a concentration-dependent manner. In conclusion, EA affects ionic and mechanical properties of rat ventricular myocytes starting at nanomolar concentrations. EA suppresses ICaL and exerts negative inotropic effects through activation of NOS-GC-cGMP pathways. Thus, EA may be useful in pathophysiological conditions such as hypertension and ischemic heart diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1097/FJC.0000000000000153DOI Listing

Publication Analysis

Top Keywords

ventricular myocytes
16
rat ventricular
12
ellagic acid
8
ventricular
5
acid reduces
4
reduces l-type
4
l-type ca2+
4
ca2+ current
4
current contractility
4
contractility modulation
4

Similar Publications

KLF2-dependent transcriptional regulation safeguards the heart against pathological hypertrophy.

J Mol Cell Cardiol

December 2024

Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Key Laboratory of Application of Pluripotent Stem Cells in Heart Regeneration, Chinese Academy of Medical Sciences, Beijing 100037, China. Electronic address:

Background: Our previous single-cell RNA sequencing study in the adult human heart revealed that cardiomyocytes from both the atrium and ventricle display high activities of Krüppel-like factor 2 (KLF2) regulons. However, the role of the transcription factor KLF2 in cardiomyocyte biology remains largely unexplored.

Methods And Results: We employed transverse aortic constriction surgery in male C57BL/6 J mice to develop an in vivo model of cardiac hypertrophy, and generated different in vitro cardiac hypertrophy models in neonatal rat ventricular myocytes and human embryonic stem cell-derived cardiomyocytes.

View Article and Find Full Text PDF

The global incidence of mortality due to heart failure (HF) is on the rise, presenting a significant challenge in various regions, including Japan. There is an urgent need for innovative prevention and treatment strategies to address this issue. Traditional medicine, particularly Japanese Kampo medicine (JKM), has been proposed as a potential therapeutic approach and has undergone examination in clinical trials related to HF.

View Article and Find Full Text PDF

The effect of a citrus-derived flavonoid, hesperetin, on the automaticity and contraction of isolated guinea pig myocardium was examined. Hesperetin inhibited the rate of ectopic action potential firing of the pulmonary vein myocardium; the slope of the diastolic depolarization was decreased with minimum change in the action potential waveform. The effect was dependent on the concentration; the EC value for firing rate was 56.

View Article and Find Full Text PDF

Transcriptional profile of the rat cardiovascular system at single-cell resolution.

Cell Rep

December 2024

Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA 02142, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; Cardiology Division, Massachusetts General Hospital, Boston, MA 02114, USA. Electronic address:

We sought to characterize cellular composition across the cardiovascular system of the healthy Wistar rat, an important model in preclinical cardiovascular research. We performed single-nucleus RNA sequencing (snRNA-seq) in 78 samples in 10 distinct regions, including the four chambers of the heart, ventricular septum, sinoatrial node, atrioventricular node, aorta, pulmonary artery, and pulmonary veins, which produced 505,835 nuclei. We identified 26 distinct cell types and additional subtypes, with different cellular composition across cardiac regions and tissue-specific transcription for each cell type.

View Article and Find Full Text PDF

In patients with type II diabetes, the development of diabetic cardiomyopathy (DC) is associated with a high risk of mortality. Left ventricular hypertrophy, diastolic dysfunction, and exercise intolerance are the first signs of DC. The underlying mechanisms are not fully elucidated, and there is an urgent need for specific biomarkers and molecular targets for early diagnosis and treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!