Morphogenetic gradients are essential to allocate cell fates in embryos of varying sizes within and across closely related species. We previously showed that the maternal NF-κB/Dorsal (Dl) gradient has acquired different shapes in Drosophila species, which result in unequally scaled germ layers along the dorso-ventral axis and the repositioning of the neuroectodermal borders. Here we combined experimentation and mathematical modeling to investigate which factors might have contributed to the fast evolutionary changes of this gradient. To this end, we modified a previously developed model that employs differential equations of the main biochemical interactions of the Toll (Tl) signaling pathway, which regulates Dl nuclear transport. The original model simulations fit well the D. melanogaster wild type, but not mutant conditions. To broaden the applicability of this model and probe evolutionary changes in gradient distributions, we adjusted a set of 19 independent parameters to reproduce three quantified experimental conditions (i.e. Dl levels lowered, nuclear size and density increased or decreased). We next searched for the most relevant parameters that reproduce the species-specific Dl gradients. We show that adjusting parameters relative to morphological traits (i.e. embryo diameter, nuclear size and density) alone is not sufficient to reproduce the species Dl gradients. Since components of the Tl pathway simulated by the model are fast-evolving, we next asked which parameters related to Tl would most effectively reproduce these gradients and identified a particular subset. A sensitivity analysis reveals the existence of nonlinear interactions between the two fast-evolving traits tested above, namely the embryonic morphological changes and Tl pathway components. Our modeling further suggests that distinct Dl gradient shapes observed in closely related melanogaster sub-group lineages may be caused by similar sequence modifications in Tl pathway components, which are in agreement with their phylogenetic relationships.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4148200 | PMC |
http://dx.doi.org/10.1371/journal.pcbi.1003807 | DOI Listing |
J Dermatol Sci
November 2024
Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. Electronic address:
Background: Mutations in gamma-secretase complex (GSC) genes are associated with hidradenitis suppurativa (HS), and toll-like receptor (TLR) 2 is elevated in HS lesions. However, it remains unclear whether TLR2 is upregulated in the skin lesions of patients with HS with GSC gene variants, and the role of its upregulation in the pathogenesis of this disease are unknown.
Objective: To investigate the role of TLR2 upregulation in NCSTN and PSENEN knockdown keratinocytes.
Mol Med
December 2024
Disease Prevention and Health Management Center, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, Zhejiang, China.
Background: Nonalcoholic fatty liver disease (NAFLD) has developed as a leading public wellness challenge as a result of changes in dietary patterns. Unfortunately, there is still a lack of effective pharmacotherapy methods for NAFLD. Wang's empirical formula (WSF) has demonstrated considerable clinical efficacy in treating metabolic disorders for years.
View Article and Find Full Text PDFInt Dent J
December 2024
Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Faculty of Dentistry, Department of Anatomy, Chulalongkorn University, Bangkok, Thailand.
Human periodontal ligament (hPDL) is continuously exposed to mechanical forces that can induce inflammatory responses in resident stem cells (hPDLSCs). Here, we review the impact of mechanical force on hPDLSCs, focusing on the activation of inflammatory cytokines and related signalling pathways, which subsequently influence periodontal tissue remodelling. The effects of various mechanical forces, including compressive, shear, and tensile forces, on hPDLSCs are discussed.
View Article and Find Full Text PDFTrends Biochem Sci
December 2024
Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia. Electronic address:
Necroptosis is a mode of programmed cell death executed by the mixed lineage kinase domain-like (MLKL) pseudokinase following its activation by the upstream receptor-interacting protein kinase-3 (RIPK3), subsequent to activation of death, Toll-like, and pathogen receptors. The pathway originates in innate immunity, although interest has surged in therapeutically targeting necroptosis owing to its dysregulation in inflammatory diseases. Here, we explore how protein conformation and higher order assembly of the pathway effectors - Z-DNA-binding protein-1 (ZBP1), RIPK1, RIPK3, and MLKL - can be modulated by post-translational modifications, such as phosphorylation, ubiquitylation, and lipidation, and intermolecular interactions to tune activities and modulate necroptotic signaling flux.
View Article and Find Full Text PDFMetabolites
December 2024
The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China.
General control nonderepressible 5 (Gcn5) is a lysine acetyltransferase (KAT) that is evolutionarily conserved across eukaryotes, with two homologs (Kat2a and Kat2b) identified in humans and one (Gcn5) in . Gcn5 contains a P300/CBP-associated factor (PCAF) domain, a Gcn5-N-acetyltransferase (GNAT) domain, and a Bromodomain, allowing it to regulate gene expression through the acetylation of both histone and non-histone proteins. In , Gcn5 is crucial for embryonic development, with maternal Gcn5 supporting early development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!