Understanding patterns of larval dispersal is key in determining whether no-take marine reserves are self-sustaining, what will be protected inside reserves and where the benefits of reserves will be observed. We followed a multidisciplinary approach that merged detailed descriptions of fishing zones and spawning time at 17 sites distributed in the Midriff Island region of the Gulf of California with a biophysical oceanographic model that simulated larval transport at Pelagic Larval Duration (PLD) 14, 21 and 28 days for the most common and targeted predatory reef fish, (leopard grouper Mycteroperca rosacea). We tested the hypothesis that source-sink larval metapopulation dynamics describing the direction and frequency of larval dispersal according to an oceanographic model can help to explain empirical genetic data. We described modeled metapopulation dynamics using graph theory and employed empirical sequence data from a subset of 11 sites at two mitochondrial genes to verify the model predictions based on patterns of genetic diversity within sites and genetic structure between sites. We employed a population graph describing a network of genetic relationships among sites and contrasted it against modeled networks. While our results failed to explain genetic diversity within sites, they confirmed that ocean models summarized via graph and adjacency distances over modeled networks can explain seemingly chaotic patterns of genetic structure between sites. Empirical and modeled networks showed significant similarities in the clustering coefficients of each site and adjacency matrices between sites. Most of the connectivity patterns observed towards downstream sites (Sonora coast) were strictly asymmetric, while those between upstream sites (Baja and the Midriffs) were symmetric. The best-supported gene flow model and analyses of modularity of the modeled networks confirmed a pulse of larvae from the Baja Peninsula, across the Midriff Island region and towards the Sonoran coastline that acts like a larval sink, in agreement with the cyclonic gyre (anti-clockwise) present at the peak of spawning (May-June). Our approach provided a mechanistic explanation of the location of fishing zones: most of the largest areas where fishing takes place seem to be sustained simultaneously by high levels of local retention, contribution of larvae from upstream sites and oceanographic patterns that concentrate larval density from all over the region. The general asymmetry in marine connectivity observed highlights that benefits from reserves are biased towards particular directions, that no-take areas need to be located upstream of targeted fishing zones, and that some fishing localities might not directly benefit from avoiding fishing within reserves located adjacent to their communities. We discuss the implications of marine connectivity for the current network of marine protected areas and no-take zones, and identify ways of improving it.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4137664 | PMC |
http://dx.doi.org/10.7717/peerj.511 | DOI Listing |
Clinics (Sao Paulo)
January 2025
Department of Otolaryngology and Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, Anhui Province, China. Electronic address:
Objective: TRIB3 has been confirmed to participate in and regulate biological metabolic activities in head and neck tumors such as nasopharyngeal carcinoma and oropharyngeal carcinoma, so the purpose of this study was to explore whether there is a correlation between TRIB3 and Laryngeal Squamous Cell Carcinoma (LSCC) and to preliminarily explore the biological characteristics of TRIB3 in LSCC.
Methods: TRIB3 expression in the LSCC was analyzed based on The Cancer Genome Atlas (TCGA) database. CCK-8 assay, Colony Formation Assay, wound healing assay, and Transwell assay were performed to investigate the roles of TRIB3 in the proliferation, invasion and metastasis of LSCC.
Biomed Phys Eng Express
January 2025
Shandong University, No. 72, Binhai Road, Jimo, Qingdao City, Shandong Province, Qingdao, 266200, CHINA.
U-Net is widely used in medical image segmentation due to its simple and flexible architecture design. To address the challenges of scale and complexity in medical tasks, several variants of U-Net have been proposed. In particular, methods based on Vision Transformer (ViT), represented by Swin UNETR, have gained widespread attention in recent years.
View Article and Find Full Text PDFChaos
January 2025
School of Mathematics and Statistics, University College Dublin, Dublin 4 D04 V1W8, Ireland.
Synaptic plasticity plays a fundamental role in neuronal dynamics, governing how connections between neurons evolve in response to experience. In this study, we extend a network model of θ-neuron oscillators to include a realistic form of adaptive plasticity. In place of the less tractable spike-timing-dependent plasticity, we employ recently validated phase-difference-dependent plasticity rules, which adjust coupling strengths based on the relative phases of θ-neuron oscillators.
View Article and Find Full Text PDFChaos
January 2025
Department of Applied Mathematics, College of Applied Sciences, Kyung Hee University, Yongin 17104, Republic of Korea.
Investment in resources is essential for facilitating information dissemination in real-world contexts, and comprehending the influence of resource allocation on information dissemination is, thus, crucial for the efficacy of collaborative networks. Nonetheless, current studies on information dissemination frequently fail to clarify the complex interplay between information distribution and resources in network contexts. In this work, we establish a resource-based information dissemination model to identify the complex interplay by examining the propagation threshold and equilibriums.
View Article and Find Full Text PDFJ Bone Miner Res
January 2025
Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.
The socioeconomic burden of hip fractures, the most severe osteoporotic fracture outcome, is increasing and the current clinical risk assessment lacks sensitivity. This study aimed to develop a method for improved prediction of hip fracture by incorporating measurements of bone microstructure and composition derived from high-resolution peripheral quantitative computed tomography (HR-pQCT). In a prospective cohort study of 3028 community-dwelling women aged 75 to 80, all participants answered questionnaires and underwent baseline examinations of anthropometrics and bone by dual x-ray absorptiometry (DXA) and HR-pQCT.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!