Fixation in finite populations evolving in fluctuating environments.

J R Soc Interface

Theoretical Physics, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK

Published: November 2014

AI Article Synopsis

  • The environment plays a key role in how populations evolve, influencing birth and death rates that can vary due to environmental changes.
  • Researchers developed a theory to understand how likely a mutant will successfully reproduce in a population of regular individuals, and how long this process takes, especially in fluctuating environments.
  • Interestingly, a dynamic environment can boost the chances of a mutant thriving compared to stable conditions, and the study also explores how mutations affect the population's long-term behavior under different environmental shifts.

Article Abstract

The environment in which a population evolves can have a crucial impact on selection. We study evolutionary dynamics in finite populations of fixed size in a changing environment. The population dynamics are driven by birth and death events. The rates of these events may vary in time depending on the state of the environment, which follows an independent Markov process. We develop a general theory for the fixation probability of a mutant in a population of wild-types, and for mean unconditional and conditional fixation times. We apply our theory to evolutionary games for which the payoff structure varies in time. The mutant can exploit the environmental noise; a dynamic environment that switches between two states can lead to a probability of fixation that is higher than in any of the individual environmental states. We provide an intuitive interpretation of this surprising effect. We also investigate stationary distributions when mutations are present in the dynamics. In this regime, we find two approximations of the stationary measure. One works well for rapid switching, the other for slowly fluctuating environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4191092PMC
http://dx.doi.org/10.1098/rsif.2014.0663DOI Listing

Publication Analysis

Top Keywords

finite populations
8
fluctuating environments
8
environment population
8
fixation
4
fixation finite
4
populations evolving
4
evolving fluctuating
4
environment
4
environments environment
4
population evolves
4

Similar Publications

This study presents a novel approach to modeling breast cancer dynamics, one of the most significant health threats to women worldwide. Utilizing a piecewise mathematical framework, we incorporate both deterministic and stochastic elements of cancer progression. The model is divided into three distinct phases: (1) initial growth, characterized by a constant-order Caputo proportional operator (CPC), (2) intermediate growth, modeled by a variable-order CPC, and (3) advanced stages, capturing stochastic fluctuations in cancer cell populations using a stochastic operator.

View Article and Find Full Text PDF

Swin UNETR Segmentation with Automated Geometry Filtering for Biomechanical Modeling of Knee Joint Cartilage.

Ann Biomed Eng

January 2025

Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, CCIT216, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.

Purpose: Simulation studies, such as finite element (FE) modeling, offer insights into knee joint biomechanics, which may not be achieved through experimental methods without direct involvement of patients. While generic FE models have been used to predict tissue biomechanics, they overlook variations in population-specific geometry, loading, and material properties. In contrast, subject-specific models account for these factors, delivering enhanced predictive precision but requiring significant effort and time for development.

View Article and Find Full Text PDF

The use of ultrasound contrast agents (UCAs) for estimating portal pressure has recently gained attention due to its clinical promise, yet variability in acoustic amplitude poses challenges. UCAs contain microbubbles (1-10 µm in diameter), and understanding their acoustic response is essential to address this variability. However, systematic exploration of factors influencing microbubble behavior remains limited in current literature.

View Article and Find Full Text PDF

The citrus red mite (CRM), Panonychus citri (McGregor) (Acari: Tetranychidae), a worldwide pest chiefly infesting Citrus plants, has spread from Southern China to Northern China. Little information is known about the population performance of CRM on the plants except for citrus trees and pear trees. In order to evaluate the extent of damage might caused by CRM to the fruit trees cultivated in Northern China, the performance of CRM on four Rosaceae species, including three main fruit tree species (pear-Pyrus pyrifolia Nakai cv.

View Article and Find Full Text PDF

Development and reproduction of Grapholita molesta (Lepidoptera: Tortricidae) on the 3 artificial diets in the laboratory.

J Econ Entomol

January 2025

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.

Grapholita molesta (Busck) (Lepidoptera: Tortricidae) is a major pest of many fruit trees. The large-scale artificial propagation technology of the insect is the basis for the field application of the sterile insect technique and biological control products based on host mass reproduction. However, a low-cost diet with easily accessible materials remains lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!