Neuronal oscillations form parietal/frontal networks during contour integration.

Front Integr Neurosci

Department of Neuroinformatics, Institute of Cognitive Sciences, University of Osnabrück Osnabrück, Germany.

Published: August 2014

The ability to integrate visual features into a global coherent percept that can be further categorized and manipulated are fundamental abilities of the neural system. While the processing of visual information involves activation of early visual cortices, the recruitment of parietal and frontal cortices has been shown to be crucial for perceptual processes. Yet is it not clear how both cortical and long-range oscillatory activity leads to the integration of visual features into a coherent percept. Here, we will investigate perceptual grouping through the analysis of a contour categorization task, where the local elements that form contour must be linked into a coherent structure, which is then further processed and manipulated to perform the categorization task. The contour formation in our visual stimulus is a dynamic process where, for the first time, visual perception of contours is disentangled from the onset of visual stimulation or from motor preparation, cognitive processes that until now have been behaviorally attached to perceptual processes. Our main finding is that, while local and long-range synchronization at several frequencies seem to be an ongoing phenomena, categorization of a contour could only be predicted through local oscillatory activity within parietal/frontal sources, which in turn, would synchronize at gamma (>30 Hz) frequency. Simultaneously, fronto-parietal beta (13-30 Hz) phase locking forms a network spanning across neural sources that are not category specific. Both long range networks, i.e., the gamma network that is category specific, and the beta network that is not category specific, are functionally distinct but spatially overlapping. Altogether, we show that a critical mechanism underlying contour categorization involves oscillatory activity within parietal/frontal cortices, as well as its synchronization across distal cortical sites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4131516PMC
http://dx.doi.org/10.3389/fnint.2014.00064DOI Listing

Publication Analysis

Top Keywords

oscillatory activity
12
category specific
12
visual features
8
coherent percept
8
perceptual processes
8
contour categorization
8
categorization task
8
activity parietal/frontal
8
network category
8
visual
7

Similar Publications

Background: Neural activity and subjective experiences indicate that breath-awareness practices, which focus on mindful observation of breath, promote tranquil calm and thoughtless awareness.

Purpose: This study explores the impact of tristage Ānāpānasati-based breath meditation on electroencephalography (EEG) oscillations and self-reported mindfulness states in novice meditators following a period of effortful cognition.

Methods: Eighty-nine novice meditators (82 males; Mean Age = 24.

View Article and Find Full Text PDF

The dynamics of neuronal systems are characterized by hallmark features such as oscillations and synchrony. However, it has remained unclear whether these characteristics are epiphenomena or are exploited for computation. Due to the challenge of selectively interfering with oscillatory network dynamics in neuronal systems, we simulated recurrent networks of damped harmonic oscillators in which oscillatory activity is enforced in each node, a choice well supported by experimental findings.

View Article and Find Full Text PDF

This study involved 72 volunteers divided into two groups according to the apnea-hypopnea index (AHI): AHI>15 episodes per hour (ep/h) (main group, n=39, including 28 men, median AHI 44.15, median age 47), 0≤AHI≤15ep/h (control group, n=33, including 12 men, median AHI 2, median age 28). Each participant underwent polysomnography with a recording of 19 EEG channels.

View Article and Find Full Text PDF

The engagement of predictive mechanisms during language comprehension can facilitate processing and modulate neural oscillatory activity. These modulations include alpha-band activity decreases prior to expected words, reflecting anticipatory preparation, and frontal theta-band activity following unexpected words, reflecting engagement of cognitive control. It remains unknown how these oscillatory dynamics are impacted by aging.

View Article and Find Full Text PDF

Inner speech refers to the silent production of language in one's mind. As a purely mental action without obvious physical manifestations, inner speech has been notoriously difficult to quantify. Inner speech is thought to be closely related to overt speech.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!