Previously there have been no methods for directly tracing the flow of cerebrospinal fluid (CSF) under physiological conditions, and the circulation of CSF has therefore been studied and visualized by injecting a radioactively labeled tracer or contrast medium visible in x-ray images. The newly developed Time-Spatial Inversion Pulse (Time-SLIP) method makes it possible to directly visualize the flow of CSF using magnetic resonance imaging (MRI), permitting CSF dynamics to be depicted in a certain time frame. The CSF dynamics visualized using Time-SLIP has been found to differ markedly from the classical CSF circulation theory described in medical textbooks. It can be said that research on CSF dynamics has advanced to the next stage with the use of this innovative imaging method. Obtaining a more accurate understanding of normal CSF physiology and pathophysiology should lead to improved diagnostic accuracy, permit the identification of new etiological factors in a variety of diseases, and promote the development of new therapeutic approaches.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4157376 | PMC |
http://dx.doi.org/10.3325/cmj.2014.55.337 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!