A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The incidence of adverse events in an Italian acute care hospital: findings of a two-stage method in a retrospective cohort study. | LitMetric

Background: The promotion of safer healthcare interventions in hospitals is a relevant public health topic. This study is aimed to investigate predictors of Adverse Events (AEs) taking into consideration the Charlson Index in order to control for confounding biases related to comorbidity.

Methods: The study was a retrospective cohort study based on a two-stage assessment tool which was used to identify AEs. In stage 1, two physicians reviewed a random sample of patient records from 2008 discharges. In stage 2, reviewers independently assessed each screened record to confirm the presence of AEs. A univariable and multivariable analysis was conducted to identify prognostic factors of AEs; socio-demographic and some main organizational variables were taken into consideration. Charlson comorbidity Index was calculated using the algorithm developed by Quan et al.

Results: A total of 1501 records were reviewed; mean patients age was 60 (SD: 19) and 1415 (94.3%) patients were Italian. Forty-six (3.3%) AEs were registered; they most took place in medical wards (33, 71.7%), followed by surgical ones (9, 19.6%) and intensive care unit (ICU) (4, 8.7%). According to the logistic regression model and controlling for Charlson Index, the following variables were associated to AEs: type of admission (emergency vs elective: OR 3.47, 95% CI: 1.60-7.53), discharge ward (surgical and ICU vs medical wards: OR 2.29, 95% CI: 1.00-5.21 and OR 4.80, 95% CI: 1.47-15.66 respectively) and length of stay (OR 1.03, 95% CI 1.01-1.04). Among patients experiencing AEs a higher frequency of elderly (≥65 years) was shown (58.7% vs 49.3% among patients without AEs) but this difference was not statistically significant. Interestingly, a higher percentage of patients admitted through emergency department was found among patients experiencing AEs (69.7% vs 55.1% among patients without AEs).

Conclusions: The incidence of AEs was associated with length of stay, type of admission and unit of discharge, independently by comorbidity. On the basis of our results, it appears that organizational characteristics, taking into account the adjustment for comorbidity, are the main factors responsible for AEs while patient vulnerability played a minor role.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4155122PMC
http://dx.doi.org/10.1186/1472-6963-14-358DOI Listing

Publication Analysis

Top Keywords

aes
11
adverse events
8
retrospective cohort
8
cohort study
8
consideration charlson
8
medical wards
8
type admission
8
length stay
8
patients experiencing
8
experiencing aes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!