Therapeutic approaches for prevention or reduction of amyloidosis are currently a main objective in basic and clinical research on Alzheimer's disease. Among the agents explored in clinical trials are anti-Aβ peptide antibodies and secretase inhibitors. Most anti-Aβ antibodies are considered to act via inhibition of amyloidosis and enhanced clearance of existing amyloid, although secretase inhibitors reduce the de novo production of Aβ. Limited information is currently available on the efficacy and potential advantages of combinatorial antiamyloid treatment. We performed a chronic study in APPLondon transgenic mice that received treatment with anti-Aβ antibody gantenerumab and BACE inhibitor RO5508887, either as mono- or combination treatment. Treatment aimed to evaluate efficacy on amyloid progression, similar to preexisting amyloidosis as present in Alzheimer's disease patients. Mono-treatments with either compound caused a dose-dependent reduction of total brain Aβ and amyloid burden. Combination treatment with both compounds significantly enhanced the antiamyloid effect. The observed combination effect was most pronounced for lowering of amyloid plaque load and plaque number, which suggests effective inhibition of de novo plaque formation. Moreover, significantly enhanced clearance of pre-existing amyloid plaques was observed when gantenerumab was coadministered with RO5508887. BACE inhibition led to a significant time- and dose-dependent decrease in CSF Aβ, which was not observed for gantenerumab treatment. Our results demonstrate that combining these two antiamyloid agents enhances overall efficacy and suggests that combination treatments may be of clinical relevance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4145168 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.1405-14.2014 | DOI Listing |
Curr Alzheimer Res
December 2024
Silicon Script Sciences Private Limited, Bharatpur, Gorahi-22400, Dang, Nepal.
Background: Alzheimer's disease (AD) is marked by cognitive decline, amyloid plaques, neurofibrillary tangles, and cholinergic loss. Due to the limited success of amyloid-targeted therapies, attention has shifted to new non-amyloid targets like phosphodiesterases (PDE). This study investigates the potential of Flemingia vestita (FV) phytomolecules and derivatives, particularly 8-Prenyldaidzein, in AD treatment.
View Article and Find Full Text PDFSAR QSAR Environ Res
December 2024
Department of Pharmacognosy, Faculty of Pharmacognosy and Traditional Medicine, Hanoi University of Pharmacy, Hanoi, Vietnam.
A comprehensive computational strategy that combined QSAR modelling, molecular docking, and ADMET analysis was used to discover potential inhibitors for β-secretase 1 (BACE-1). A dataset of 1,138 compounds with established BACE-1 inhibitory activities was used to build a QSAR model using mol2vec descriptors and support vector regression. The obtained model demonstrated strong predictive performance (training set: = 0.
View Article and Find Full Text PDFChemMedChem
December 2024
Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
Alzheimer's disease (AD) is a complex neurodegenerative disorder having limited treatment options. The beta-site APP cleaving enzyme 1 (BACE-1) is a key target for therapeutic intervention in Alzheimer's disease. To discover new scaffolds for BACE-1 inhibitors, a ChemBridge DIVERSet library of 20,000 small molecules was employed to structure-based virtual screening.
View Article and Find Full Text PDFMolecules
November 2024
Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia.
Alzheimer's disease (AD) is a neurodegenerative disorder associated with the dysregulation of several key enzymes, including acetylcholinesterase (AChE), cyclooxygenase-2 (COX-2), glycogen synthase kinase 3β (GSK-3β), β-site amyloid precursor protein cleaving enzyme 1 (BACE-1), and caspase-3. In this study, machine learning algorithms such as Random Forest (RF), Gradient Boost (GB), and Extreme Gradient Boost (XGB) were employed to screen US-FDA approved drugs from the ZINC15 database to identify potential dual inhibitors of COX-2 and AChE. The models were trained using molecules obtained from the ChEMBL database, with 5039 molecules for AChE and 3689 molecules for COX-2.
View Article and Find Full Text PDFMolecules
November 2024
Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea.
Alzheimer's disease (AD) remains a significant public health challenge with limited effective treatment options. Ramalin, a compound derived from Antarctic lichens, has shown potential in the treatment of AD because of its strong antioxidant and anti-inflammatory properties. However, its instability and toxicity have hindered the development of Ramalin as a viable therapeutic agent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!