X-ray absorption near-edge structure (XANES) spectroscopy has been used to investigate the unoccupied electronic states and local geometry of Ir1-xPtxTe2(x = 0.0, 0.03 and 0.04) as a function of temperature. The Ir L3-edge absorption white line, as well as high energy XANES features due to the photoelectron multiple scatterings with near neighbours, reveal clear changes in the unoccupied 5d-electronic states and the local geometry with Pt substitution. We find an anomalous spectral weight transfer across the known first-order structural phase transition from the trigonal to monoclinic phase in IrTe2, which characterizes the reduced atomic structure symmetry below the transition temperature. No such changes with temperature are seen in the Pt substituted superconducting samples. In addition, a gradual increase of the spectral weight transfer is observed in IrTe2 with a further decrease in temperature below the transition, indicating that the low temperature phase is likely to have a symmetry lower than the monoclinic one. The results suggest that the interplay between inter-layer and intra-layer atomic correlations should have a significant role in the properties of an Ir1-xPtxTe2 system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0953-8984/26/37/375702 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Hunan University, College of Materials Science and Engineering, South Lushan Road 2#, 410082, China, 410082, Changsha, CHINA.
Renewable electricity-driven electrochemical reduction of CO2 offers a promising route for production of high-value ethanol. However, the current state of this technology is hindered by low selectivity and productivity, primarily due to limited understanding of the atomic-level active sites involved in ethanol formation. Herein, we identify that the interfacial oxygen vacancy-neighboring Cu (Ov-Cu) pair sites are the active sites for CO2 electroreduction to ethanol.
View Article and Find Full Text PDFEnviron Geochem Health
January 2025
Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt.
Fusarium solani biomass plays a significant role in water pollution remediation due to its ability to sequester heavy metals, particularly cobalt (Co(II)) and cadmium (Cd(II)), which pose severe environmental and health risks. This study aimed to identify fungi from sewage-contaminated sites and evaluate their efficiency in absorbing and reducing Co(II) and Cd(II) ions. The biosorption potential of irradiated Fusarium solani biomass for removing Co(II) and Cd(II) ions from aqueous solutions was investigated.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States.
Least-squares tensor hypercontraction (LS-THC) has received some attention in recent years as an approach to reduce the significant computational costs of wave function-based methods in quantum chemistry. However, previous work has demonstrated that LS-THC factorization performs disproportionately worse in the description of wave function components (e.g.
View Article and Find Full Text PDFBackground: CHRFAM7A is a human-restricted gene associated with neuropsychiatric and neurodegenerative disorders. The translated CHRFAM7A protein incorporates into the α7 nicotinic acetylcholine receptor (α7nAChR) leading to a hypomorphic receptor. Mechanistic insight from isogenic iPSC derived neuronal and mononuclear cells demonstrated that CHRFAM7A affects Ca signaling and activates small GTPase Rac1 leading to an actin cytoskeleton gain of function.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)─UMR 6251, F-35000 Rennes, France.
Chloronium (HCl) is an important intermediate of Cl-chemistry in space. The accurate knowledge of its collisional properties allows a better interpretation of the corresponding observations in interstellar clouds and, therefore, a better estimation of its abundance in these environments. While the ro-vibrational spectroscopy of HCl is well-known, the studies of its collisional excitation are rather limited and these are available for the interaction with helium atoms only.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!