Many conduits have demonstrated potential to substitute nerve autografts; however, the influence of conduit inner diameter (ID) has never been studied as a separate parameter. This experimental study compared motor recovery after segmental nerve repair with two different ID collagen conduits: 1.5 and 2.0 mm. In addition, the conduits were analyzed in vitro to determine the variations of ID before and after hydration. Thirty rats were divided into three groups: 2.0 mm ID, 1.5 mm ID, and a control group autograft. After 12 weeks, the 1.5 mm ID group demonstrated significant increase in force (P < 0.0001) and weight (P < 0.0001) of the tibialis anterior muscle and better histomorphometry results of the peroneal nerve (P < 0.05) compared to 2.0 mm ID group; nevertheless, autograft results outperformed both conduits (P < 0.0001). Conduits ID were somewhat smaller than advertised, measuring 1.59 ± 0.03 mm and 1.25 ± 0.0 mm. Only the larger conduit showed a 6% increase in ID after hydration, changing to 1.69 ± 0.02 mm. Although autografts perform best, an improvement in motor recovery can be achieved with collagen conduits when a better size match conduit is being used. Minimal changes in collagen conduits ID can be expected after implantation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/micr.22312DOI Listing

Publication Analysis

Top Keywords

collagen conduits
12
conduits
8
recovery segmental
8
segmental nerve
8
nerve repair
8
motor recovery
8
group autograft
8
nerve
5
influence nerve
4
nerve conduits
4

Similar Publications

Fast yet force-effective mode of supracellular collective cell migration due to extracellular force transmission.

PLoS Comput Biol

January 2025

Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri, United States of America.

Cell collectives, like other motile entities, generate and use forces to move forward. Here, we ask whether environmental configurations alter this proportional force-speed relationship, since aligned extracellular matrix fibers are known to cause directed migration. We show that aligned fibers serve as active conduits for spatial propagation of cellular mechanotransduction through matrix exoskeleton, leading to efficient directed collective cell migration.

View Article and Find Full Text PDF

Amputated neuromas, a common consequence of peripheral nerve injury, can cause significant pain and may impair daily life. Herein, we conducted a retrospective study on patients who underwent a nerve-capping technique using the bioabsorbable nerve conduit Renerve®, with a minimum follow-up period of 6 months. We conducted a retrospective study to assess patients with amputation neuromas of the finger or palm who underwent surgical treatment using the capping technique with the Renerve® conduit between October 2018 and September 2022.

View Article and Find Full Text PDF

Objective: To engineer an acellular mesh to reconstruct the urethra to replace the current surgical practice of using autologous tissue grafts. Cell based approaches have shown progress. However, these have been associated with high costs and logistical challenges.

View Article and Find Full Text PDF

Type I collagen extracellular matrix facilitates nerve regeneration via the construction of a favourable microenvironment.

Burns Trauma

December 2024

Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical School of Nantong University, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China.

Background: The extracellular matrix (ECM) provides essential physical support and biochemical cues for diverse biological activities, including tissue remodelling and regeneration, and thus is commonly applied in the construction of artificial peripheral nerve grafts. Nevertheless, the specific functions of essential peripheral nerve ECM components have not been fully determined. Our research aimed to differentially represent the neural activities of main components of ECM on peripheral nerve regeneration.

View Article and Find Full Text PDF

Background: Cold intolerance following digital nerve injury burdens patients significantly. To better understand how cold intolerance evolves in the setting of digital nerve injuries, a sub-analysis of a trial comparing conduit-based (CONDUIT) and processed nerve allograft (PNA) repairs was conducted. It was hypothesized that PNA repairs would alleviate cold intolerance more effectively, especially for longer nerve gaps.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!