The main task of our present study is the preparation of newly complexes of Mg(II), Ca(II), Sr(II) and Ba(II) with diclofenac which succeeded to great extent in alleviating the side effects of diclofenac alone and ameliorating the kidney function parameters and antioxidant capacities with respect to diclofenac treated group alone. The Mg(II), Ca(II), Sr(II) and Ba(II) with diclofenac have been synthesized and characterized using infrared, electronic and (1)H NMR spectral, thermogravimetric and conductivity measurements. The diclofenac ligand has been found to act as bidentate chelating agent. Diclofenac complexes coordinate through the oxygen's of the carboxyl group. The molar ratio chelation is 1:2 (M(2+)-dic) with general formula [M(dic)2(H2O)2]⋅nH2O. Antibacterial screening of the alkaline earth metal complexes against Escherichia coli (Gram-ve), Bacillus subtilis (Gram+ve) and anti-fungal (Asperagillus oryzae, Asperagillus niger, Asperagillus flavus) were investigated. The kidney functions in male albino rats were ameliorated upon treatment with metal complexes of dic, which are represented by decreasing the levels of urea and uric acid to be located within normal values. The other looks bright spot in this article is the assessment of antioxidant defense system including SOD, CAT and MDA with the help of Sr(2+), Mg(2+) and Ca(2+)-dic complexes. The hormones related to kidney functions and stresses have been greatly ameliorated in groups treated with dic complexes in comparable with dic treated group.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2014.07.101 | DOI Listing |
Int J Biol Macromol
January 2025
Magnetic Resonance Center, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy. Electronic address:
Calcium- and Integrin-Binding protein 2 (CIB2) is a widely expressed protein with an uncertain biological role. Two of its four EF-hand motifs bind Mg(II) and/or Ca(II), thus triggering conformational changes. Although previous studies suggested that CIB2 preferentially binds Mg(II) over Ca(II) under physiological conditions, an atomic level characterization of CIB2 in the presence of both cations was lacking.
View Article and Find Full Text PDFJ Chem Theory Comput
August 2024
Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States.
One commonly observed binding motif in metalloproteins involves the interaction between a metal ion and histidine's imidazole side chains. Although previous imidazole-M(II) parameters established the flexibility and reliability of the 12-6-4 Lennard-Jones (LJ)-type nonbonded model by simply tuning the ligating atom's polarizability, they have not been applied to multiple-imidazole complexes. To fill this gap, we systematically simulate multiple-imidazole complexes (ranging from one to six) for five metal ions (Co(II), Cu(II), Mn(II), Ni(II), and Zn(II)) which commonly appear in metalloproteins.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt.
Water softening is a treatment process required to remove calcium (Ca(II)) and magnesium (Mg(II)) cations from water streams. Nanocomposites can provide solutions for such multiple challenges and have high performance and low application costs. In this work, a multimetallic cobalt, nickel, and copper 2-aminoterephthalic acid metal-organic framework ((Co/Ni/Cu-NHBDC) MOF) was synthesized by a simple solvothermal technique.
View Article and Find Full Text PDFAnal Chim Acta
June 2024
Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland.
Background: Calcium and magnesium ions are highly abundant and important cations in human body. At the same time, both dyscalcemia and dysmagnesemia are frequently encountered in the clinical practice. As deficiency or excess of Ca(II) or Mg(II) can cause severe symptoms, determining these ions in serum is of great importance.
View Article and Find Full Text PDFLangmuir
April 2024
School of Materials and Energy Engineering, Guizhou Institute of Technology, Guiyang 550005, China.
The recovery of precious metals, such as palladium (Pd), from wastewater, is an economically important field. The present study reports the application of polyglycidyl methacrylate (PGMA) macroporous spheres with diethylaminoethyl (DEAE) functional groups (PGMA-DEAE) for the adsorption of palladium ions [Pd(II)] from simulated wastewater solutions. The effects of pH, adsorption duration, and initial concentration of Pd(II) on the adsorption amount were evaluated systematically.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!