Light-driven hydrogen production from aqueous protons using molybdenum catalysts.

Inorg Chem

Department of Chemistry, University of Rochester, Rochester, New York 14627, United States.

Published: September 2014

Homogeneous light-driven systems employing molecular molybdenum catalysts for hydrogen production are described. The specific Mo complexes studied are six-coordinate bis(benzenedithiolate) derivatives having two additional isocyanide or phosphine ligands to complete the coordination sphere. Each of the complexes possesses a trigonal prismatic coordination geometry. The complexes were investigated as proton reduction catalysts in the presence of [Ru(bpy)3](2+), ascorbic acid, and visible light. Over 500 TON are obtained over 24 h. Electrocatalysis occurs between the Mo(IV)/Mo(III) and Mo(III)/Mo(II) redox couples, around 1.0 V vs SCE. Mechanistic studies by (1)H NMR spectroscopy show that upon two-electron reduction the Mo(CNR)2(bdt)2 complex dissociates the isocyanide ligands, followed by addition of acid to result in the formation of molecular hydrogen and the Mo(bdt)2 complex.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic501440aDOI Listing

Publication Analysis

Top Keywords

hydrogen production
8
molybdenum catalysts
8
light-driven hydrogen
4
production aqueous
4
aqueous protons
4
protons molybdenum
4
catalysts homogeneous
4
homogeneous light-driven
4
light-driven systems
4
systems employing
4

Similar Publications

Although the use of biochar as an adsorbent for the removal of various pollutants from wastewater is well established, the use of biochar/modified biochar for the scavenging of antibiotics from aqueous media in the Fenton-like system receives less attention. The highest kasugamycin (KSM) adsorption capacity (5.0 mg g) was obtained from the pristine biochar at the lowest initial pH of 3 in Fenton-like system.

View Article and Find Full Text PDF

Background: The role and relevance of macrophages both as causes and therapeutics of cellular senescence is rapidly emerging. However, current knowledge regarding the extent and depth of senescence in macrophages in vivo is limited and controversial. Further, acute models of stress-induced senescence in transformed/cancerous macrophage cell lines are being used although their efficacy and relevance are not characterized.

View Article and Find Full Text PDF

Impact of ions, pH and the nature of substrate on the structure and activity of a robust single-stranded DNA binding (SSB)-like protein from Phi11.

Arch Microbiol

January 2025

Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, NH17B, Zuarinagar, Goa, 403726, India.

The gene gp13 in bacteriophage Phi11 has been annotated as a Single-Stranded DNA binding protein (SSB protein, GenBank accession no. NC_004615.1).

View Article and Find Full Text PDF

Defluorination reactions are increasingly vital due to the extensive use of organofluorine compounds with robust carbon-fluorine (C-F) bonds; particularly, the efficient defluorination of widespread and persistent per- and polyfluoroalkyl substances under mild conditions is crucial due to their accumulation in the environment and human body. Herein, we demonstrate that surface-modified silicate of pronounced proton affinity can confine active hydrogen (•H) onto nanoscale zerovalent iron (nZVI) by withdrawing electrons from nZVI to react with bound protons, generating confined active hydrogen (•H) for efficient defluorination under ambient conditions. The exposed silicon cation (Si) of silicate functions as a Lewis acid site to activate the C-F bond by forming Si.

View Article and Find Full Text PDF

Modulation of RuO Nanocrystals with Facile Annealing Method for Enhancing the Electrocatalytic Activity on Overall Water Splitting in Acid Solution.

Adv Sci (Weinh)

January 2025

Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, College of Chemical and Chemical Engineering, Shantou University, Shantou, 515041, P. R. China.

RuO-based materials are considered an important kind of electrocatalysts on oxygen evolution reaction and water electrolysis, but the reported discrepancies of activities exist among RuO electrocatalysts prepared via different processes. Herein, a highly efficient RuO catalysts via a facile hydrolysis-annealing approach is reported for water electrolysis. The RuO catalyst dealt with at 200 °C (RuO-200) performs the highest activities on both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in acid with overpotentials of 200 mV for OER and 66 mV for HER to reach a current density of 100 mA cm as well as stable operation for100 h.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!