The III-V semiconductor nanowires (NWs) have a great potential for applications in a variety of future electronic and photonic devices with enhanced functionality. In this work, we employ polarization-resolved microphotoluminescence (μ-PL) spectroscopy to study polarization properties of light emissions from individual GaNP and GaP/GaNP core/shell NWs with average diameters ranging between 100 and 350 nm. We show that the near-band-edge emission, which originates from the GaNP regions of the NWs, is strongly polarized (up to 60% at 150 K) in the direction perpendicular to the NW axis. The polarization anisotropy can be retained up to room temperature. This polarization behavior, which is unusual for zinc blende NWs, is attributed to local strain in the vicinity of the N-related centers participating in the radiative recombination and to preferential alignment of their principal axis along the growth direction. Our findings therefore show that defect engineering via alloying with nitrogen provides an additional degree of freedom to tailor the polarization anisotropy of III-V nanowires, which is advantageous for their applications as nanoscale emitters of polarized light.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl502281pDOI Listing

Publication Analysis

Top Keywords

polarization anisotropy
8
polarization
5
origin strong
4
strong photoluminescence
4
photoluminescence polarization
4
polarization ganp
4
ganp nanowires
4
nanowires iii-v
4
iii-v semiconductor
4
semiconductor nanowires
4

Similar Publications

Improved birefringence, given its capacity to modulate polarized light, holds a lively role in the optoelectronic industry. Traditionally, alkaline-earth metal halides have possessed low birefringence due to their nearly optical isotropic properties. Herein, the substitution of interlayer anion with linear S─S unit that meticulously engineered by reduced valence state and strong covalent bond is integrated into the optically isotropic BaF, offering the new salt-inclusion chalcogenide BaFS.

View Article and Find Full Text PDF

Fluorescence Anisotropy for Monitoring cis- and trans-Membrane Interactions of Synaptotagmin-1.

Methods Mol Biol

January 2025

Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar.

Vesicle fusion induces neurotransmitter release, orchestrated by synaptotagmin-1 (Syt-1) as a Ca sensor. However, the precise molecular mechanisms of Syt-1 remain controversial, with various and competing models proposed based on different ionic strengths. Syt-1, residing on the vesicle membrane alongside anionic phospholipids such as phosphatidylserine (PS), undergoes Ca-induced binding to its own vesicle membrane, known as the cis-interaction, which prevents the trans-interaction of Syt-1 with the plasma membrane.

View Article and Find Full Text PDF

Tetrabromobisphenol A, but not bisphenol A, disrupts plasma membrane homeostasis in myeloid cell models - A novel threat from an established persistent organic pollutant.

Sci Total Environ

January 2025

Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland; Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland. Electronic address:

Article Synopsis
  • The study investigates the effects of Bisphenol A (BPA) and Tetrabromobisphenol A (TBBPA) on the dynamics of biological membranes, focusing on how these persistent organic pollutants impact myeloid cell lines.
  • It was found that TBBPA specifically disrupts the plasma membrane's biophysical homeostasis, increasing mobility and decreasing order, while BPA showed no significant effects.
  • The findings highlight TBBPA's potential to impair immune function, emphasizing the environmental toxicity concerns associated with persistent organic pollutants.
View Article and Find Full Text PDF

Toward Large-Scale Photonic Chips Using Low-Anisotropy Thin-Film Lithium-Tantalate.

Adv Sci (Weinh)

January 2025

College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, China.

Photonic manipulation of large-capacity data with the advantages of high speed and low power consumption is a promising solution for explosive growth demands in the era of post-Moore. A well-developed lithium-niobate-on-insulator (LNOI) platform has been widely explored for high-performance electro-optic (EO) modulators to bridge electrical and optical signals. However, the photonic waveguides on the x-cut LNOI platform suffer serious polarization-mode conversion/coupling issues because of strong birefringence, making it hard to realize large-scale integration.

View Article and Find Full Text PDF

Altermagnetism is a new class of material with zero net magnetization, but having a nonrelativistic spin-split band structure. Here, we investigate the multifunctional properties of the hexagonal wurtzite MnO (-MnO). -MnO has a direct band gap of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!