The objective of the present study is to investigate the influence of surface modification on systemic stability of NPs. Vitamin E TPGS (1% w/v) was used for surface modification of berberine chloride nanoparticles. Naked and surface modified NPs were incubated in different SBFs (pH 6.8 and 7.4) with or without bile salts and human plasma. NPs were observed for particle agglomeration and morphology by particle size analyzer and TEM, respectively. The haemocompatibility studies were conducted on developed NPs to evaluate their safety profile. The surface modified NPs were stable compared to naked NPs in different SBFs due to the steric stabilization property of vitamin E TPGS. Particle agglomeration was not seen when NPs were incubated in SBF (pH 6.8) with bile salts. No agglomeration was observed in NPs after their incubation in plasma but particle size of the naked NPs increased due to adhesion of plasma proteins. The TEM images confirmed the particle size results. DSC and FT-IR studies confirmed the coexistence of TPGS in surface modified NPs. The permissible haemolysis, LDH release, and platelet aggregation revealed that NPs were compatible for systemic administration. Thus, the study illustrated that the surface modification is helpful in the maintenance of stability of NPs in systemic conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4137617 | PMC |
http://dx.doi.org/10.1155/2014/951942 | DOI Listing |
J Food Sci
January 2025
Department of Food Science and Technology, Faculty of Food Industry, Bu-Ali Sina University, Hamedan, Iran.
Edible coating (EC) can reduce excessive oil absorption in deep-fat fried food products. Ultrasound is an efficient pretreatment to preserve the quality characteristics of fried samples. The impact of guar gum based EC and sonication on the quality parameters of fried zucchini slices was investigated.
View Article and Find Full Text PDFMater Horiz
January 2025
School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
Recent advances in interfacial solar steam generation have made direct solar desalination a promising approach for providing cost-effective and environmentally friendly clean water solutions. However, developing highly effective, salt-resistant solar absorbers for long-term desalination at high efficiencies and evaporation rates remains a significant challenge. We present a Janus hydrogel-based absorber featuring a surface modified with thermo-responsive hydroxypropyl cellulose (HPC) and a hydrogel matrix containing photothermal conversion units, MXene, specifically designed for long-term seawater desalination.
View Article and Find Full Text PDFMol Divers
January 2025
Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Mohali, Punjab, 160062, India.
CD47, a cell surface protein, serves as a "don't eat me" signal that prevents immune cells from engulfing healthy cells upon its interaction with SIRPα. Cancer cells exploit this mechanism by overexpressing CD47 to evade immune destruction. Blocking the interaction between CD47 and its receptor, SIRPα, is a promising therapeutic strategy.
View Article and Find Full Text PDFSmall
January 2025
College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
Currently, CsPbI quantum dots (QDs) based light-emitting diodes (LEDs) are not well suited for achieving high efficiency and operational stability due to the binary-precursor method and purification process, which often results in the nonstoichiometric ratio of Cs/Pb/I. This imbalance leads to amounts of iodine vacancies, inducing severe non-radiative recombination processes and phase transitions of QDs. Herein, red-emitting CsPbI QDs are reported with excellent optoelectronic properties and stability based on the synergistic effects of halide-rich modulation passivation and lattice repair.
View Article and Find Full Text PDFChemSusChem
January 2025
Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China.
Inverted perovskite solar cells (IPSCs) utilizing nickel oxide (NiO) as hole transport material have made great progress, driven by improvements in materials and interface engineering. However, challenges remain due to the low intrinsic conductivity of NiO and inefficient hole transport. In this study, we introduced MoS nanoparticles at the indium tin oxide (ITO) /NiO interface to enhance the ITO surface and optimize the deposition of NiO, resulting in increased conductivity linked to a ratio of Ni:Ni.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!