The success of the helminth-host relationship depends on a biochemical molecular arsenal. Perhaps the proteome is the largest and most important set of this weaponry, in which the proteins have a crucial role in vital processes to the parasite/host relationship, from basic metabolism and energy production to complex immune responses. Nowadays, the bioproducts expressed by the parasites are under the "spotlight" of immunoassays and biochemical analysis in helminthology, especially in proteomic analysis, which has provided valuable information about the physiology of the infecting agent. Looking into this point of view, why not turn to the infected agent as well? This study characterised the proteomic profile of fluid-filled fibrous cysts of encapsulated Ortleppascaris sp. larvae in the hepatic parenchyma of their intermediate host, the amphibian Rhinella marina. The proteins were separated by two-dimensional electrophoresis and identified by MS with the aid of Peptide Mass Fingerprint. A total of 54 molecules were analysed in this system, revealing a complex protein profile with molecules related to basic metabolic processes of the parasite, energy production, oxi-reduction and oxidative stress processes as well as molecules related to the host response. This study contributes to proteomic studies of protein markers of the development, infectivity, virulence and co-existence of helminths and their hosts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142271 | PMC |
http://dx.doi.org/10.1016/j.ijppaw.2014.05.004 | DOI Listing |
R Soc Open Sci
January 2025
Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
Biological invasions can disrupt the close and longstanding coevolved relationships between host and parasites. At the same time, the shifting selective forces acting on demography during invasion can result in rapid evolution of traits in both host and parasite. Hosts at the invasion front may reduce investment into costly immune defences and redistribute those resources to other fitness-enhancing traits.
View Article and Find Full Text PDFIntegr Zool
January 2025
School of Natural Sciences, Macquarie University, Sydney, Australia.
The invasion of cane toads (Rhinella marina) across tropical Australia has resulted in the rapid evolution of traits that enable higher rates of dispersal, and that adapt toads to hot dry climates. In anurans, a larger heart facilitates both locomotor activity and desiccation tolerance. Heart size is also often affected, either directly or indirectly, by parasite infections.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Laboratório de Estudos Cromossômicos, Instituto de Biologia, Universidade de Campinas, Campinas 13083-862, SP, Brazil.
Background: The satellite DNA (satDNA) PcP190 has been identified in multiple frog species from seven phylogenetically distant families within Hyloidea, indicating its broad distribution. This satDNA consists of repeats of approximately 190 bp and exhibits a highly conserved region (CR) of 120 bp, which is similar to the transcribed region of 5S ribosomal DNA (rDNA), and a hypervariable region (HR) that varies in size and nucleotide composition among and within species. Here, to improve our understanding of PcP190 satDNA, we searched for evidence of its transcription in the available transcriptomes of (Bufonidae) and (Leptodactylidae), two phylogenetically distantly related species.
View Article and Find Full Text PDFGenome Biol Evol
November 2024
Evolution & Ecology Research Centre, School of Biotechnology & Biomolecular Sciences, University of New South Wales, Sydney, Australia.
Mitochondrial DNA (mtDNA) has been widely used in genetics research for decades. Contamination from nuclear DNA of mitochondrial origin (NUMTs) can confound studies of phylogenetic relationships and mtDNA heteroplasmy. Homology searches with mtDNA are widely used to detect NUMTs in the nuclear genome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!